Track process optimization for EUV HVM

Y. Kamei¹, T. Shiozawa¹, H. Mizunoura¹, S. Kawakami¹, P. Foubert², D. DeSimone², Lucia D'Urzo³, Hareen Bayana³, K. Nafus¹

¹Tokyo Electron Kyushu Ltd. ²imec ³ENTEGRIS, INC.

Introduction

Tokyo Electron Limited (TEL[™]) and imec are continuously collaborating to enhance the quality of processing for EUV, using ASML NXE3300 and TEL CLEAN TRACK[™] LITHIUS Pro [™] Z-EUV litho cluster in imec.

There are several different material approaches for EUV lithography such as chemically amplified positive tone resist (CAR), negative tone resist, and non-CAR resist. Fundamental studies and optimization of individual materials are required for application toward EUV manufacturing.

Purpose

To improve defectivity and CDU and then to establish the POR at imec for L/S and CH.

EUV CAR resist

L/S, CDU Comparison

Experimental Condition Coater/Developer

Optimization for 16nm HP process CDU, resulted in comparable results with 22nm HP CDU.

L/S defectivity improvement

First leaning of defectivity by LS22nm

System : CLEAN TRACK™ LITHIUS Pro™Z-EUV litho cluster	
EUV Scanner	
System : ASML NXE3300	
Measurement	
SEM : Hitachi CG5000	
Defectivity: KLA2925, eDR (KLA), SP3 (KLA)	

CH CDU Comparison

- Initial processing conditions were setup for 24nmHP CH evaluation
- Further development planned to improve the defectivity and CDU.

EUV non-CAR metal-oxide resist

Wet particle improvement by coating process

- By applying our technology for filtration, in film defectivity is improved for metal-oxide resist..

<u>Conclusion</u>

- Initial data of L/S 16nm and CH 24nm with NXE3300 were established.
- Develop defects were significantly reduced by smaller pore size filtering.
- In metal-oxide resist, development for defectivity and technology for preventing crosscontamination were established.

	Α	В	С
Filter for developer	A=20nm DEV	B=5nm UPE	C=1nm UPE AUC

- Defect pareto revealed developer defects as largest contributor
- Developer related defects are greatly reduced by filtration pore size, improved membrane cleanliness and membrane functionalization.
- Optimization of coated particle defect density via resist filtering is ongoing.

Preventing cross metal-contamination in Track

We compared metal-contamination witness samples before and after processing 100 wafers.

Acknowledgement

The authors would like to extend their appreciation to

- Imec EUV development team
- Tokyo Electron Kyushu Ltd. SPE Process Technology department
- Tokyo Electron Europe Ltd. Clean Track Research and Development
- JSR Corporation for L/S defectivity improvement
- Inpria Corporation for non-CAR resist evaluation

