



October 24-26, 2016, Hiroshima, Japan

# DDR Process and Materials for NTD Photo Resist toward 1Xnm Patterning and beyond

Shuhei Shigaki, Satoshi Takeda, Wataru Shibayama Makoto Nakajima and Rikimaru Sakamoto

Nissan Chemical Industries, LTD.

Materials Research Laboratory
Semiconductor Materials Research Department

### **Outline**

### **About DDR process**

About DDR process and material for NTD PR

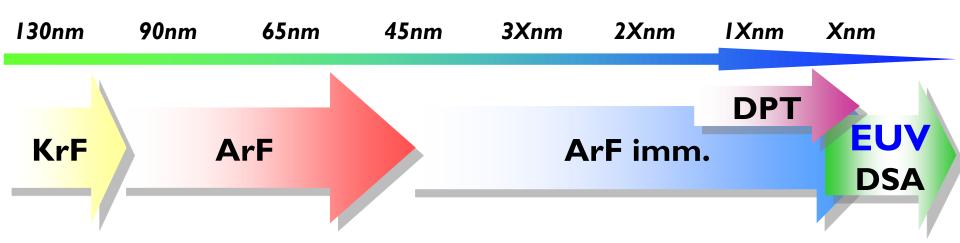
#### **Patterning data**

- -Pattern reverse from L/S into L/S
- -Pattern reverse from pillar into C/H

### **Summary**

### **About DDR process**

### About DDR process and material for NTD PR


#### **Patterning data**

- -Pattern reverse from L/S into L/S
- -Pattern reverse from pillar into C/H

### Summary

### Lithography technique

#### Lithography technique



Some lithography techniques have been demonstrated to create fine pattern.

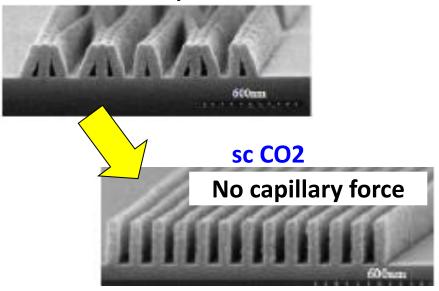
EUV lithography is one of the candidate for next gen. lithography.

### Difficulty in current process

| Process             | Thin PR           |               | Thick PR |                |
|---------------------|-------------------|---------------|----------|----------------|
| step                | Ideal             | Actual        | Ideal    | Actual         |
| Litho<br>graphy     | PR HM 1 HM 2 Sub. |               |          |                |
| Pattern<br>transfer |                   | Can't open HM |          | Can't transfer |

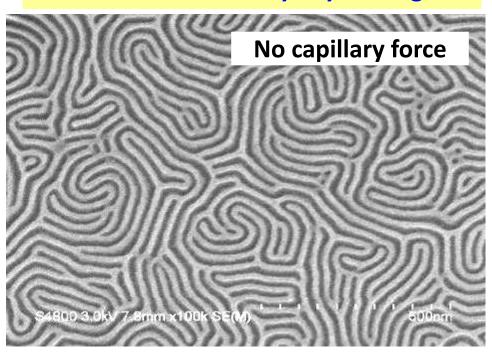
Thick PR is prefer to achieve pattern transfer.

**⇒** Thicker PR cause pattern collapse...




Dry process is one of the solution to overcome this trade-off.

### **Dry process**

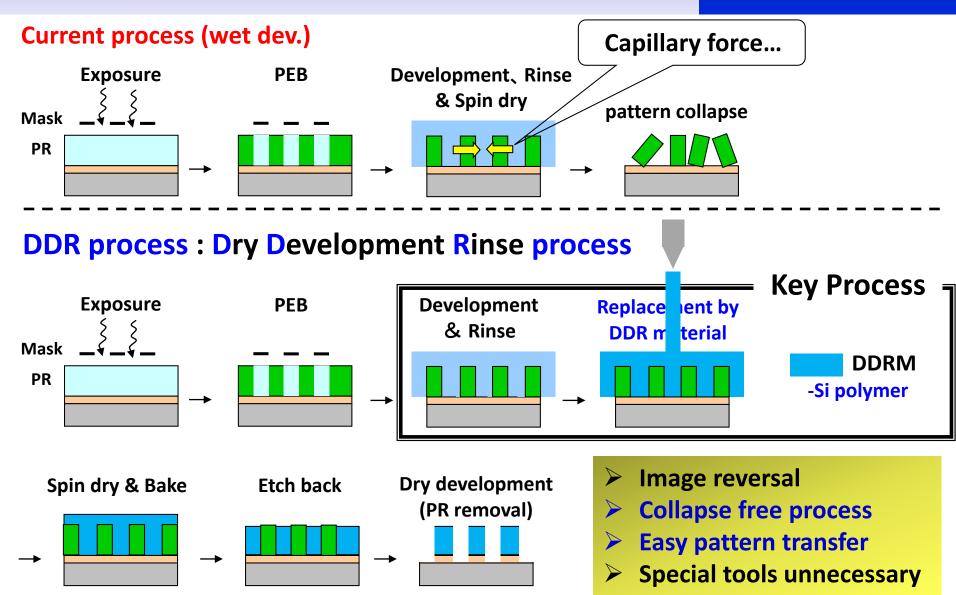

#### sc CO2 Dry Development

**Wet Development** 



DSA (= <u>Directed Self-Assembly</u>)

[Pattern creation by Dry Etching]

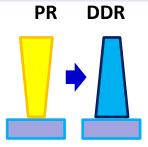



L0 = 30nm

Dry process can create fine pattern with high aspect ratio.

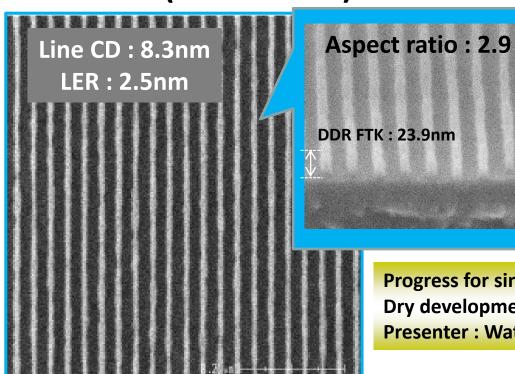
→ NissanChemical also has Dry process 【DDR Process】

### **Dry Development Rinse process**

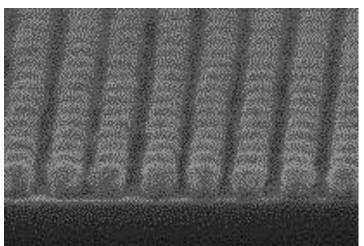



### **Current progress for DDR process**

NCR500(80nm)


DDR specialized EUV PR (70nm)

Nissan Std. Si-HM






### 8nm Line (Pitch 32mn)



### 22hp Reversed pillar



Progress for single nm resolution by applying
Dry development rinse process (DDRP) and materials (DDRM)
Presenter: Wataru Shibayama (Poster)



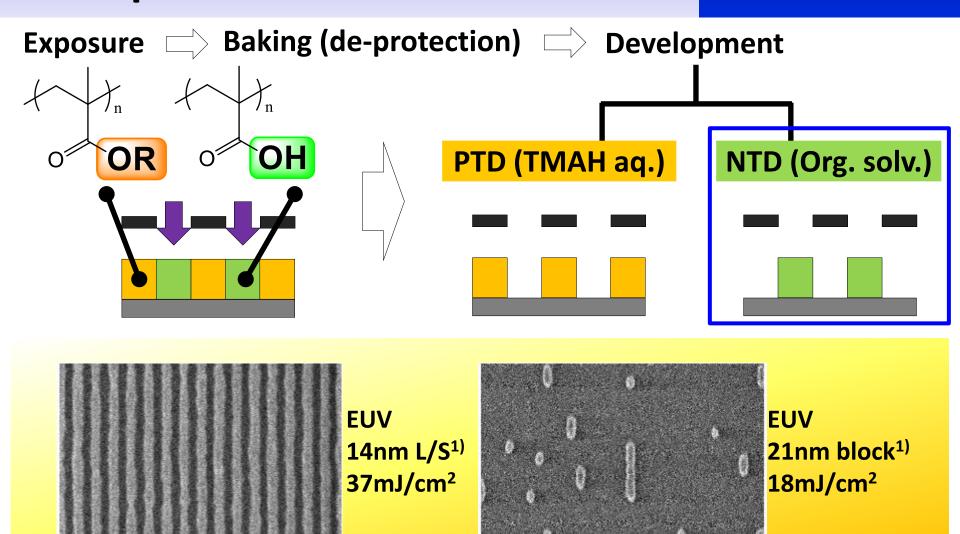
**How about NTD PR?** 

### **About DDR process**

### **About DDR process and material for NTD PR**

#### **Patterning data**

- -Pattern reverse from L/S into L/S
- -Pattern reverse from pillar into C/H


#### **Summary**



1) Proc. of SPIE, Negative-tone imaging with EUV exposure toward 13 nm hp, Fujifilm

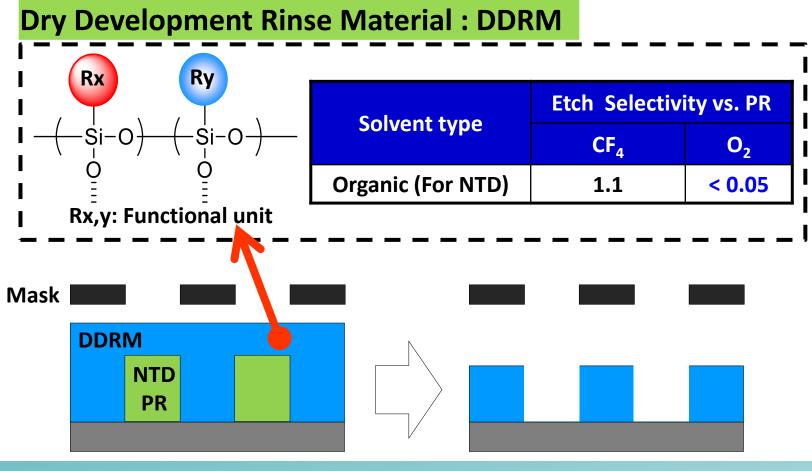
### **NTD** process

Nissan Chemical,
-where unique & solution meet



Current NTD PR shows almost same performance compared to PTD-PR.

### **Merit of NTD-DDR process**


reversal

In EUVL, dark field mask is the preferred because of defectivity, flare

Target: Fine Trench, C/H **Blight mask NTD** image Pattern image got worse **Defect** -Flare NTD -Defect printing only **Dark mask NTD** image image reversal Thick **Defect NTD DDRM** & **Image** 

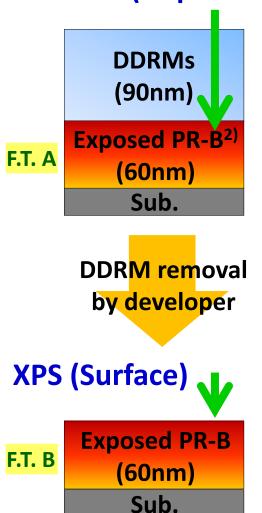
C/H or trench can be created by NTD-DDR process with high quality. It become easy to achieve pattern transfer due to using DDRM as HM.

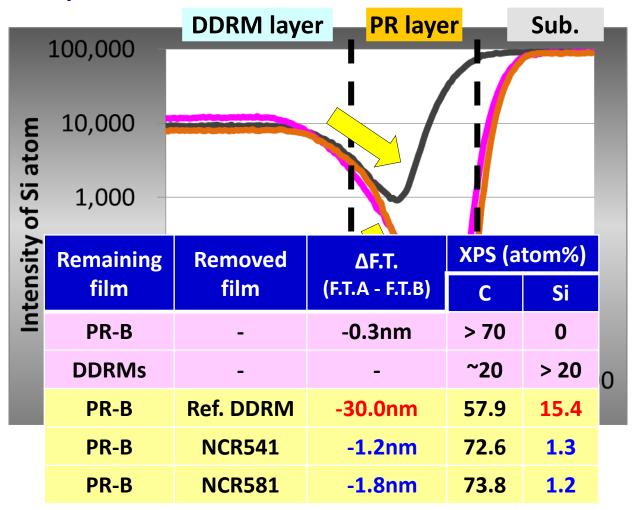
### **DDR Material for NTD PR**



#### **Requirement:**

- **♦** High compatibility for organic developer
- Gap filling in narrow pitch


### **Candidate of DDRM for NTD PR**


| Sample NCR541              |                                                      | NCR581                                   |  |
|----------------------------|------------------------------------------------------|------------------------------------------|--|
| Generation                 | 2 <sup>nd</sup> gen.                                 | 3 <sup>rd</sup> gen.                     |  |
| Polymer                    | R1 R2 (-Si-O) (-Si-O) O E                            | R3 R1 —————————————————————————————————— |  |
| Functional                 | R1,2: Solubility for org. solv.                      | R1: Solubility for org. solv.            |  |
| unit                       | 11 <b>_</b> /_ 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | R3: High cross-link density              |  |
| Solvent                    | Org. solvent A                                       | Org. solvent A                           |  |
| Si content<br>(Normalized) | 1.0                                                  | 1.2                                      |  |

### Study of mixing layer

#### **ToF-SIMS (Depth direction)**







Mixing level: Low

### **About DDR process**

#### About DDR process and material for NTD PR

#### **Patterning data**

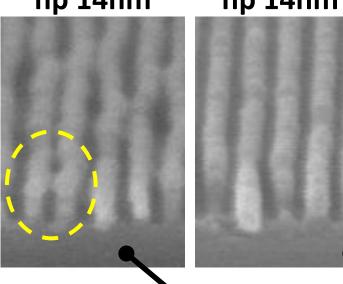
- -Pattern reverse from L/S into L/S
- -Pattern reverse from pillar into C/H

### **Summary**

### **FUJ!FILM**

### Patterning @hp14~18nm



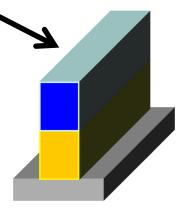

NXE3300 (imec), NA: 0.33

|                                                    | hp18nm | hp15nm | hp14nm      |
|----------------------------------------------------|--------|--------|-------------|
| Normal NTD<br>(w/o rinse)<br>PR-B (Fujifilm, 40nm) |        |        |             |
| NCR541 Previous DDRM                               |        |        |             |
| NCR581 High cross-link type                        |        |        | A.R. > 2.5! |

High cross link type DDRM showed good patterning property.

### Pattern wigging after etching

NCR541 hp 14nm NCR581 hp 14nm




| Property                                 | NCR541  | NCR581 |
|------------------------------------------|---------|--------|
| Mixing level                             | 1.0 – 3 | 1.5nm  |
| Si content (Normalized)                  | 1.0     | 1.2    |
| Film density (Normalized)                | 1.0     | 1.1    |
| O <sub>2</sub> Etch rate<br>(Normalized) | 1.0     | < 0.5  |

Etch damage

low cross-link

Soft pattern



Low etch damage

High cross-link Rigid pattern

#### **About DDR process**

### About DDR process and material for NTD PR

#### **Patterning data**

- -Pattern reverse from L/S into L/S
- -Pattern reverse from pillar into C/H

#### **Summary**

### **FUJ!FILM**

### **Comparison of LCDU**



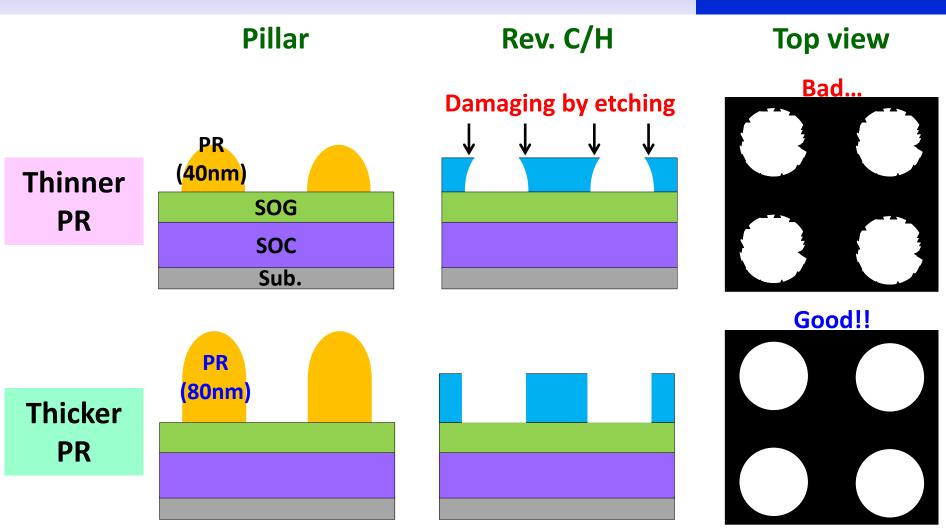
CD size 30nm / Pitch 52nm, PR-B, F.T.: 40nm

PTD C/H (imec STD)

**NTD Pillar** (PR-B, imec STD)

Ave. CD: 32.2nm Range: 1.6nm 1.5nm 3σ:

Ave. CD: 32.1nm 1.9nm Range: 0.8nm 3σ:

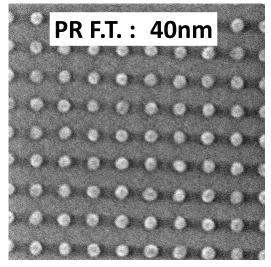

**NTD Pillar**  $\rightarrow$  C/H (NCR581)

NXE3300 (imec), NA: 0.33

Ave. CD: 28.7nm 1.9nm Range: 1.5nm 3σ:

Rev. C/H of DDRM showed same LCDU compared to PTD C/H in EUVL. There were still gap compared to original pillar.

### Dependence of pattern shape

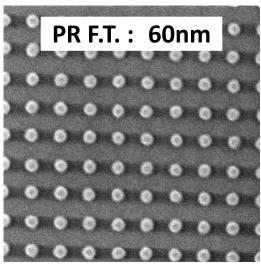



To use thicker PR and to apply enough etch back are useful for good LCDU.

### **Dependence of PR thickness**

Pillar 30nm / Pitch 60nm, PR-B, F.T.: 40~80nm

EB tool (Elionix), 130kV, 50pA



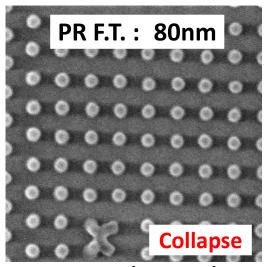

Ave. CD: 25.7nm Max CD: 26.5nm

Min CD: 24.9nm

Range: 1.6nm

 $3\sigma$ : 1.1nm




Ave. CD: 27.4 nm

Max CD: 27.9nm

Min CD: 26.9nm

Range: 1.0nm

 $3\sigma$ : 0.8nm

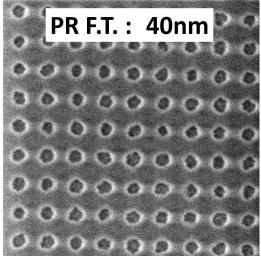


Ave. CD: (29.7nm)

Max CD: (30.3nm)

Min CD: (29.2nm)

Range: (1.1nm)


 $3\sigma$ : (0.8nm)

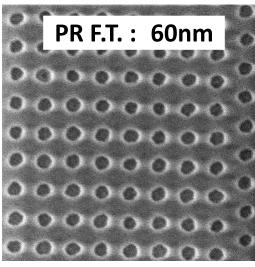
Thicker PR tended to be better LCDU.
Pillar pattern was collapsed when match thicker PR was used.

### **Dependence of PR thickness**

Hole 30nm / Pitch 60nm, PR-B, F.T.: 40~80nm

EB tool (Elionix), 130kV, 50pA




Ave. CD: 25.5 nm

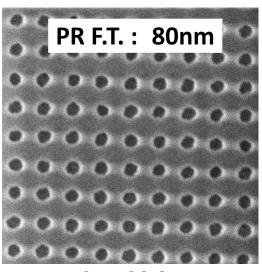
Max CD: 26.8nm

Min CD: 22.2nm

Range: 4.6nm

 $3\sigma$ : 1.5nm




Ave. CD: 28.7 nm

Max CD: 30.2nm

Min CD: 27.2nm

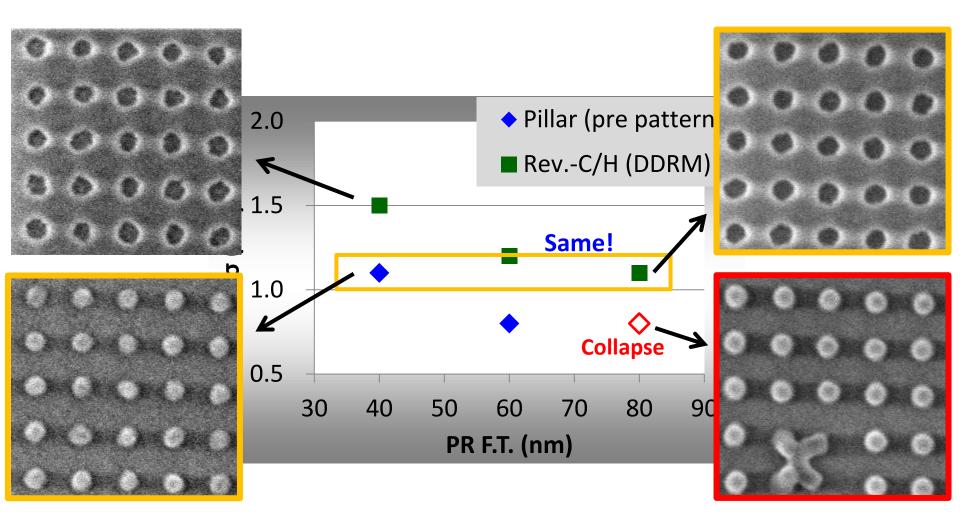
Range: 3.0nm

**3σ: 1.2nm** 



Ave. CD: 28.2 nm

Max CD: 29.5nm


Min CD: 27.0nm

Range: 2.5nm

 $3\sigma$ : 1.1nm

LCDU became better when thicker pre-pattern was reversed.

### **Summary of LCDU study**



In DDR process, LCDU could be improved by using match thicker PR.

## C/H creation with thicker PR



NXE3300 (imec), NA: 0.33

Rev. C/H (PR F.T. : 80nm)

Rev. C/H (PR F.T. : 40nm)

Original pillar (F.T. : 40nm)

 $3\sigma : 0.8nm$ 

Same level!

Ave. CD: 28.7nm Range: 1.9nm 3σ: 1.5nm Ave. CD: 30.1nm Range: 1.7nm

ange. 1.71111

 $3\sigma$ : 0.7nm

CDU of Rev. C/H can be improved by using thicker PR.

### C/H creation by high sensitive PR

EB tool (Elionix), 130kV, 50pA

CD size 40nm / Pitch 80nm

| PR series                                    | Pillar (NTD)                                           | Rev. C/H (NTD-DDR)                                         |
|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| PR-B Fujifilm Imec STD F.T.: 40nm            | Dose: 380uC/cm <sup>2</sup> Ave. CD: 35.9 nm 3σ: 1.5nm | Dose: 380uC/cm <sup>2</sup> Ave. CD: 35.1 nm 3σ: 2.3nm     |
| PR-C  Fujifilm  High sensitivity  F.T.: 40nm | Dose: 200uC/cm <sup>2</sup> Ave. CD: 37.7 nm 3σ: 1.4nm | Dose:  200uC/cm <sup>2</sup> Ave. CD:  38.7 nm  3σ:  2.0nm |

DDR process showed potential to create fine C/H with high sensitivity.

### **Summary**

New DDRM showed low damage property against NTD PR by ToF-SIMS & XPS analysis.

New DDRM with high Si content and high density showed good patterning property in EUV lithography.

Pattern reverse from pillar into C/H was successfully achieved with good LCDU in NTD-DDR process.

LCDU of reversed C/H was improved when thicker PR was applied.

NTD-DDR showed the potential to make fine C/H at match lower dose.

| Resolution          | LWR (CDU)                                      | Sensitivity                          |
|---------------------|------------------------------------------------|--------------------------------------|
| HP14nm, A.R. > 2.5! | C30P60, 3σ: 0.7nm! (Same level of original PR) | C40P80 Twice times high sensitivity! |
| *************       | (Same level of original PK)                    | compared to STD PR                   |
|                     |                                                | 0000000                              |
| HHHHH               | 0000000                                        | 0000000                              |
| EUV                 | EUV                                            | 000000 EB                            |

### Acknowledgement





Thank you for your kind attention.