

2016 International Symposium on Extreme Ultraviolet Lithography

Hiroshima, Japan 24 - 26 October, 2016

25. Oct. 2016

2016 International Symposium on EUVL

Dr. Hakaru Mizoguchi CTO & Executive Vice President, Gigaphoton

Copyright © 2014 GIGAPHOTON, Inc. All rights reserved. (Rev A) The information contained here is subject to change without notice

	• Introduction
AGENDA	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update
	 Prototype LPP Source Systems Experiment Update Higher Power EUV Source Development
	Summary

	•	Introduction	3
AGENDA	•	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update 	e
	•	Prototype LPP Source Systems Experiment Update	
	•	Higher Power EUV Source Development	
	•	Summary	

Gigaphoton's LPP Light Source Concept

- 1. High ionization rate and CE EUV tin (Sn) plasma generated by CO₂ and Pre-pulse solid laser dual wavelength shooting
- 2. Hybrid CO₂ laser system with short pulse High repetition rate oscillator and commercial cw-amplifiers
- 3. Tin (Sn) debris mitigation with a super conductive magnetic field
- 4. Accurate shooting control with droplet and laser beam control
- 5. High efficient out of band light reduction with grating structured C1 mirror

GIGAPHOTON

4

Gigaphoton EUV Sources

	Introduction	6
AGENDA	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update 	9
	 Prototype LPP Source Systems Experiment Update Higher Power EUV Source Development 	
	• Summary	

Pilot and Proto Systems Configuration

• Target System Specification

Operationa Co	l Specification	Pilot #1 HVM readiness	Proto #2 Power scaling	Proto #1 Proof of concept	
	EUV Power	250 W	> 100 W	25 W	
	CE	4%	3.5%	3%	
	Pulse rate	100 kHz	100 kHz	100 kHz	
Target Performance	Output angle	62 ^o upper (matched to NXE)	62 ^o upper (matched to NXE)	Horizontal	
	Availability	> 75%	1 week operation	1 week operation	
	Droplet generator	$<$ 20 μ m	20 <i>µ</i> m	20 – 25 μm	
	CO ₂ laser	27 kW	20 kW	5 kW	
Technology	Pre-pulse laser	picosecond	picosecond	picosecond	
	Debris mitigation	> 3 month	10 days	validation of magnetic mitigation in system	

Pilot #1: High Power EUV Source for HVM

Evolution to Pilot#1 (compared with Proto#2)

9

Pilot #1 : EUV Chamber System (1)

EUV chamber system

Pilot #1 : EUV Chamber System (2)

Pilot #1 : EUV Chamber System (3)

12

Pilot #1 : EUV Chamber System (4)

• High speed droplet generator was successfully transferred to Pilot system

		2013 Jan Proto#1	2014 Sep Proto#2	2015 Dec Proto#2	2016 Pilot#1	20MPa−DLG 60m∕s ▼	40MPa−DLG 90m/s
Droplet speed	m/s	45	60	90	90	*	
Back pressure	MPa	12	20	40	40	600um	\rightarrow \uparrow
Max Repetition rate	kHz	50	80	100	100		mn006
							* *

Droplet Status

Pilot #1 : EUV Chamber System (5)

• Lifetime of New Droplet Generator for Pilot#1 extended to more than 200 hours.

Pilot #1: Driver laser & PPL system (1)

Pilot #1: Driver laser & PPL system (2)

Top view (Foot Print)

Copyright © 2016 Gigaphoton Inc.

GIGAPHOTON

16

Pilot #1: Driver laser & PPL system (3)

Copyright © 2016 Gigaphoton Inc.

GIGAPHOTON

17

Pilot #1: Driver laser & PPL system (4)

Pilot #1: Driver laser & PPL system (5)

 High power drive laser development for EUV Lithography (Gigaphoton)

-> Poster P-ET-06 by Mr. Takashi Suganuma

- The mist shape of a picosecond prepulse is different from that of a nanosecond
- Nano-cluster distribution could be a key factor for high CE

Pre-Pulse Technology (2)

Modeling nanosecond pre-pulses

21

~ 10 ps pre-pulse "Disk like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ns pre-pulse

time

"Advances in computer simulation tools for plasma-based sources of EUV radiation" V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al. ¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Pre-Pulse Technology (3)

Modeling picosecond pre-pulses

~ 10 ps pre-pulse "Dome like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations Evolution of Sn density profile for 10 ps pre-pulse

- "Advances in computer simulation tools for plasma-based sources of EUV radiation" V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al. ¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia ² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia
- ³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Copyright © 2016 Gigaphoton Inc.

.

Pre-Pulse Technology (4)

In small experimental device, we observed **5.5% CE** under optimized condition.**17 % increase** from old champion data (CE=4.7%).

Debris Mitigation Challenges from Proto#2 (1)

25

Debris Mitigation Challenges from Proto#2 (2)

	•	Introduction	2
AGENDA	•	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update 	e
	•	Prototype LPP Source Systems Experiment Update Higher Power EUV Source Development	
	•	Summary	

Pilot #1 System is now in Operation (1)

Vessel with Magnetic Shield

Pilot #1 System is now in Operation (2)

EUV Source: Droplet Flow Monitor

29

Pilot #1 System is now in Operation (3)

Pilot #1 System is now in Operation (4)

Pilot #1 System is now in Operation (5)

Pilot#1 has been demonstrating at 100W average power with 5% CE !

Copyright © 2016 Gigaphoton Inc.

➢ Pilot #1 Data

» Conversion Eff.	5.0%
≫Power (in burst)	105W
» Duty cycle	95%
≫Power (average)	100W
\gg Operation Pls Num.	0.83Bpls
> Operation Time	5hr
» Dose Stab. (av.)	0.39%(3 σ)

- >> OSC + 4xAmplifier (Mitsubishi Electric)
- CO2 Laser Power
 Pulse Rate
 50kHz
- Pulse Duration
- 50kHz \sim 10ns

Pilot #1 System is now in Operation (6)

Conversion efficiency history

CE improvement

- Proto#2 : CE is improved to 4.0% at 250W operation
- Pilot #1 followed by

4.5-5.0% target at 100-250W operation

	 Introduction 	34			
AGENDA	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update 	e			
	 Prototype LPP Source Systems Experiment Update Higher Power ELIV Source Development 				
	 Summary 				

Prototype LPP Source Systems Experiment Update (1)

Prototype high power EUV light source is in operation

Proto #1 POC in Power Scaling &

Proto #2 High Power Experiment

Prototype LPP Source Systems Experiment Update (2)

Power Status of Proto#2 / Pilot#1

Copyright © 2016 Gigaphoton Inc.

36

Prototype LPP Source Systems Experiment Update (3)

Proto#2: 250W、 4%CE(100kHz)

37

Prototype LPP Source Systems Experiment Update (4)

200 100% In-Band Power [W] 180 90% Duty Cycle 160 80% **140** 120 100 80 60 70% . 60% Duty Cycle 50% 40% 30% 40 20% 119 hours Continuous operation 20 10% 0 0% 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Shot Number (Mpls) Condition: **Result:** Repetition rate: 100kHz In-band power: 158W-132W 40/50% * Dutv: 119 h Operation time: Average power: 79W-52W Number of Pulse: >17.8 Bpls With dose control mode < 0.19 % Dose stability 3σ : * 10 kpls on/0.15 or 0.1s off

Proto #2: Power Data (Mar. 3-17, 2016)

Prototype LPP Source Systems Experiment Update (5)

- Month to Month Stats based on 24x7
 - 100% 90% ■ Idle time 80% Upgrade 70% Others 60% CO2 Laser 50% Pre-pulse Laser 40% Vessel 30% Droplet generator 20% Availability 10% 0% Nov Dec Jan Feb Mar Apr May Jun Jul

	• Introduction
AGENDA	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update
	Prototype LPP Source Systems Experiment Update
	 Higher Power EUV Source Development
	• Summary

Higher Power EUV Source Development (1)

• Extendibility to 500W EUV Power EUV Output Power vs. CO₂ Input Power

EUV ave.Power[W]			wer[W]	Conversion Efficiency [%]										
	@10	0kH	lz	2%	3%	4%	5%	<mark>6%</mark>	7%	8%				
	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4				
	100		10	46.4	69.6	92.8	116.0	139.2	162.4	185.6				
	150		15	73.7	110.6	147.4	184.3	221.1	258.0	294.8				
	200		20	101.0	151	202.0	252.5	303.0	353.5	404.0				
	250		25	128.3	192.5	256.6	320.8	384.9	449.1	513.2	Our possil	ole scale	e-up scel	nario
5	300	× ×	30	155.6	233.4	311.2	389.0	466.8	544.6	622.4				
Ľ	350	er	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6				7777 V
gy	400	Ň	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8				
ner	450	Δ.	45	237.5	356.3	475.0	593.8	712.5	831.3	950.0				
Ш	500	ive	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2		HVM	HVM	HVM
sei	550	S S	55	292.1	438.2	584.2	730.3	876.3	1022.4	1168.4		()nd	(3rd)	
2 <u>a</u>	600	ase	60	319.4	479.1	638.8	798.5	958.2	1117.9	1277.6				
õ	650	21	65	346.7	520.1	693.4	866.8	1040.1	1213.5	1386.8	EUV nowor	250\\/	500W	1000W
0	700	8	70	374.0	561.0	748.0	935.0	1122.0	1309.0	1496.0	EOV power	2000	5007	10000
	750		75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Dulas Data	100 kHz	1001-11-	100647
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4	Pulse Rate		ΤΟΟΚΠΖ	TUUKITZ
	850		85	455.9	683.9	911.8	1139.8	1367.7	1595.7	1823.6	05		F 0/	00/
	900		90	483.2	724.8	966.4	1208.0	1449.6	1691.2	1932.8	CE	4.5%	5%	6%
	950		95	510.5	/65.8	1021.0	1276.3	1531.5	1/86.8	2042.0		051.14/	401.114	051.14
	1000		100	537.8	806.7	10/5.6	1344.5	1613.4	1882.3	2151.2	CO ₂ Laser	25kW	40kW	65kW
											Power			

Higher Power EUV Source Development (2)

Copyright © 2016 Gigaphoton Inc.

42

Higher Power EUV Source Development (3)

Stable and scalable CO2 laser drivers for high-volume-manufacturing extreme ultraviolet lithography applications (Mitsubishi Electric) -> Next Presentation: Dr. Koji Yasui MITSUEISH 2. Advantage of our laser sources Technological Advantages User Advantages Today (1)Higher gain (1)High power >25kW with better efficiency Discharge Today Relative Working Gain g/g. Electrode (2)Stable operations (2)Lower loss Gas flow Today Laser (3)High EUV power 1. Transverse-gas-flow with better efficiency Also Presented by Gigaphoton Inc. Today 3)Better beam shape 9/25

	•	Introduction	44
AGENDA	•	 250W Pilot#1 System Development Update Configuration & Key Component Technologies Update EUV Chamber System Driver laser & PPL system Pre-Pulse Technology Debris Mitigation Challenges System is now in Operation : Data Update 	te
	•	Prototype LPP Source Systems Experiment Update	
	•	Higher Power EUV Source Development	
	•	Summary	

Summary

• Pilot #1 is up running and its to demonstrate HVM capability

- EUV power recorded 100W average (105W stabilized, 95% duty) with 5% conversion efficiency for 5hours operation in September 2016.
- >> High conversion efficiency is realized with several key engineering efforts.
- \gg CO₂ driver laser power test up to 27kW in process.
- Next target is >100W average power with high duty cycle operation with C1 fullscale mirror demonstration.
- Power scaling and availability improvement with Proto #2 system in process
 - >> 256W in burst power, closed loop operation with Ce=4.0% were demonstrated.
 - 119 hours 158-132 W power (in burst power, 50% duty) under closed loop was successfully demonstrated.
 - >> Proto#2 unit recorded 43% availability during 13 week average (10h x 5 day).
- Further scalability scenario toward 500W EUV source power is under investigation.

Summary of Operation Data and Target (Proto#2, Pilot#1)

	2016 Mar.	2016 Jun.	2016 Aug.	2016 Sep.	2016 Sep.	2016 Dec.
	Proto#2	Proto#2	Proto#2	Proto#2	Pilot#1	Pilot#1 target
Power (av.)	79–52W	128W	62-99W	101W	100W	250W
Duty Cycle	40-50%	50%	50-80%	95%	95%	100%
Power (in Burst)	158-132W	256W	115-124W	106W	105W	250W
Dose Margine	40%	15%	30-35%	30%	30%	30%
Power (open loop)	221-184W	301W	177W	151W	150W	325W
Conv. Eff. (CE)	3.5	4.0%	4.0%	3.8%	5.0%	4.5%
Operation time	119h	-	56h	49h	5h	>1000h
Rep. Rate	100kHz	100kHz	50kHz	50kHz	50kHz	100kHz
CO2 Laser Power	15kW	20kW	13kW	11.9kW	9.1kW	25 kW

Acknowledgements

Thanks for co-operation:

Mitsubishi electric CO₂ **laser amp. develop. team:** *Dr. Yoichi Tanino*,* Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much.

Dr. Akira Endo : HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University

Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University

Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Thanks for funding:

EUV source development funding is partially support by **NEDO(New Energy and Industrial Technology Development Organization) in JAPAN**

Thanks to my colleagues:

EUV development team of Gigaphoton; Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.

2016 International Symposium on Extreme Ultraviolet Lithography

Hiroshima, Japan 24 - 26 October, 2016

THANK YOU

TT