Development of EUV Chemically Amplified Resist

<u>OMasahito Yahagi,</u> Kensuke Matsuzawa, Tatsuya Fujii, Kenta Suzuki, Tomotaka Yamada, Yoshitaka Komuro, Daisuke Kawana, Akiyoshi Yamazaki, Katsumi Ohmori

> TOKYO OHKA KOGYO CO., LTD. Research and Development Department

> > tok

- Requirement for EUV resist
- Development Status for EUV resist
- TOK resist formulation for positive tone
 - ✓ EUV contrast curve
 - ✓ NXE3300 result
- TOK resist formulation for negative tone with TMAH
 - ✓ NXE3300 result
- Summary

2

3

Resolution (ITRS2013)

LS (Minimum production half pitch/ Production year)
13nm hp @2017, 12nm hp @2018 (MPU fin and flash memory)

LWR (ITRS2013)

✓ 1.7nm @2017, 1.5nm @2018

Through put (SPIE2016 from ASML)

75 wafer / hr @2015, 125 wafer / hr @ 2016 (plan)
DTS = 20mJ/cm² is required to achieve target through put

Improvement of ultimate resolution, LWR and sensitivity is required at the same time

Development Status for EUV Resist

D.Van Steenwinckel et al., Proc. SPIE, 5753, 269-280 (2005)

RLS trade-off

To overcome RLS trade-off •••

1. Enhancement of acid generation efficiency, de-protecting efficiency and dissolution rate in exposed area

2. Suppression of acid diffusion and dissolution rate in unexposed area

These items need to improve at the same time

tok

Acid Generation Mechanism

T. Kozawa et al. J. Vac. Sci. Technol. B, Vol.24, No. 6, L27 (2006)

Model of Acid Generation with EUV exposure

For enhancement of acid generation efficiency •••

- ✓ Increase proton source
- ✓ Increase reactivity of PAG cation with electron

tok

Resist A (Control)

DTS:	38.6mJ/cm ²
LWR:	6.2nm
Resolution:	14nm hp

6

To improve EUV lithographic performance •••

Resist B (New)

Improvement of acid generation efficiency

- Applying of high quantum yield PAG cation
- Increasing of proton source
- Unexposed area
 - ✓ Suppression of acid diffusion
 - Increasing of Tg enhancer

EUV Contrast Curve Resist A, B

EUV contrast curves of resist A and B

NXE3300 Result Ultimate Resolution

່ເກາຍເ

Substrate: Organic UL 20nm Resist FT: 25nm Illumination: NA 0.33, dipole X45 0.848/0.307 Reticle: Supper NOVA2 metal Development: TMAH2.38% LD-30s

Sample	16nm hp	15nm hp	14nm hp	13nm hp
<u>Resist A</u> (Control)				
DTS:38.6mJ/cm ² @14nm hp LWR: 6.2nm Z-factor: 2.04E-08				
<u>Resist B</u> (New)				
DTS:43.0mJ/cm ² @14nm hp LWR: 5.8nm Z-factor: 1.59E-08				
		Z	-factor (mJ*nm3)	Line CD 11.8nm

Resist B resolved 13nm hp LS pattern

= $(Resolution)^3 \times (LER)^2 \times Sensitivity$

T. Wallow et al., Proc. SPIE, 6921, 69211 F (2008)

For Faster Sensitivity and Lower LWR

NXE33 Resist	300 Result C: Faster Sensit	tivity & Lower	Su Re Illu Ma De	bstrate SOC/SOG 75nm/10nm sist F.T.:30nm mination: NA 0.33, SMO settin nufacturable condition for N5 velopment: TMAH 2.38% LD-3	, 10 ng close to a generation L/S(not Dipole) 00s
	<u>Resist B</u> 16nm hp		<u>Resi</u> 16nm	i <u>st C</u> h hp	່ເມງອັ
	DTS: 49.8m LWR: 6.4nm	J/cm²	DTS:	24.0mJ/cm 5.4nm	2 ²
ſ	Z-factor: 2.82E-	08	Z-fac	tor: 1.06E-08	Resolved
Focus	-0.050um	-0.025um	Center	+0.025um	+0.050um
Resist C	Yidsi 18.2 m → → → → → →	n αλ	Υ¥\$k	v.ek	r.as

Resist C showed faster sensitivity and lower LWR with wide DOF (>0.1µm)

TOK Resist Formulation for Negative Tone with TMAH

Why study EUV negative tone resist ?

- ✓ It is difficult to resolve blight patterning by positive tone resist
- ✓ For bright patterning, tone inverse (Ex; negative tone resist …) technique would be one of the solution

Resist design of negative tone with TMAH

	Positive tone resist	Negative tone resist	
Exposed	Acid generat	ion efficiency	
area	De-protection efficiency	Crosslinking reaction	
Unexposed	Dissolution rate control		
area	Suppression	Enhancement	

Negative tone resist D was designed with positive tone resist concept

NXE3300 Preliminary Result

Negative Tone Resist with TMAH (LS patterning)

Substrate: Organic UL 20nm Resist FT: 25nm Illumination: NA 0.33, dipole X45 0.848/0.307 Reticle: Supper NOVA2 metal

12

Development: TMAH2.38% LD-30s

unec

Sample	16nm hp	15nm hp	14nm hp	13nm hp
<u>Resist B</u> Positive tone				
DTS:43.0mJ/cm ² @14nm hp LWR: 5.8nm Z-factor: 1.59E-08				
<u>Resist D</u> Negative tone				
DTS:27.0mJ/cm ² @14nm hp LWR: 6.6nm Z-factor: 0.94E-08				

Negative tone resist showed similar resolution as positive tone with faster sensitivity

Z-factor (mJ*nm3) = (Resolution)³ x (LER)² x Sensitivity T. Wallow et al., Proc. SPIE, 6921, 69211F (2008)

Substrate: Organic UL 20nm 13 Resist FT: 25nm Illumination: NA 0.33, cquad X45 0.848/0.307 Reticle: EUVOPC5 R02ADF Development: TMAH2.38% LD-30s

Resist D (Negative tone) DTS: 35.0mJ/cm² @ 24nm hp

33.0mJ/cm ²	34.0mJ/cm ²	35.0mJ/cm ²	36.0mJ/cm ²	37.0mJ/cm ²
22.6nm Not resolve	23.8nm Not resolve	24.3nm Resolve	25.4nm Resolve	25.8nm Resolve

24nm hp pillar patterning was achieved by negative tone resist

Summary

Development Items of EUV resist

- ✓ Polymer
 - Increasing of proton source unit
 - Increasing of protecting group
 - Applying of new Tg enhancer unit
- ✓ PAG
 - Applying of high quantum yield PAG cation
 - Increasing of PAG amount

TOK Resist Patterning Performance @IMEC NXE3300

Resist	В	С	D	
Tone	Positive	Positive	Negative	
Pattern	LS	LS	LS Pillar	
Sensitivity	41.3mJ/cm ² @13nmhp	24.0mJ/cm ² @16nmhp	27.0mJ/cm ² @14nmhp	35.0mJ/cm ² @24nmhp
LWR	6.3nm	5.4nm	6.6nm	

14

Acknowledgement

Collaboration Sites

15

Thank you for your kind attention !!

