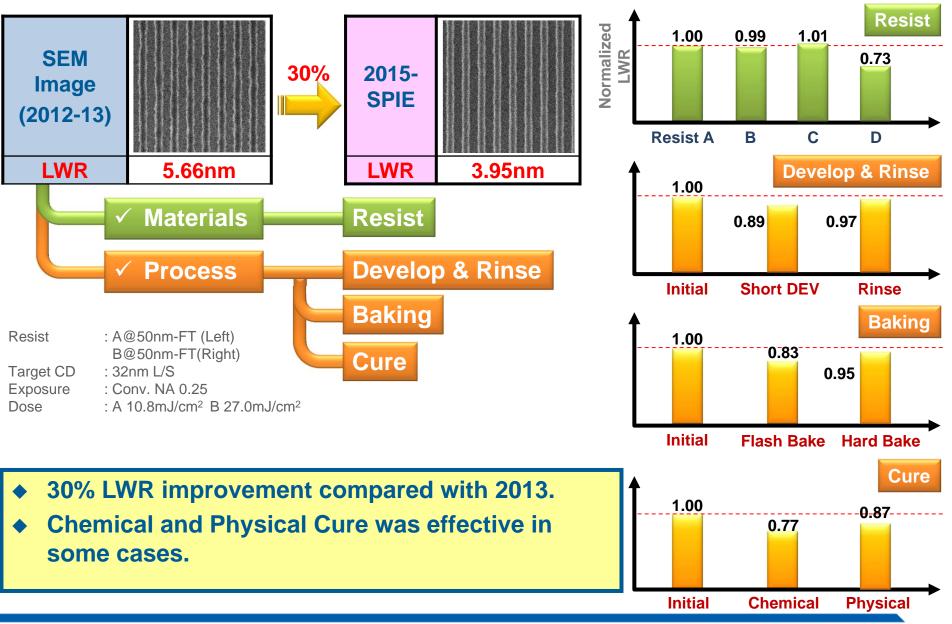


LWR Improvement on EUV Track System

Masahiko Harumoto, *Harold Stokes, *Yan Thouroude, Yuji Tanaka, Koji Kaneyama, Charles Pieczulewski and Masaya Asai

SCREEN Semiconductor Solutions CO., LTD. * SCREEN SPE Germany GmbH

Poster Session : P-IM-02 International Symposium on Extreme Ultraviolet Lithography 2015 Monday, October 5, 2015 Maastricht, The Netherlands



Outline

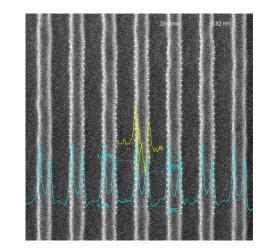
- Background ~Previous improvements~
- Goal
- Experimental
- Results and Discussions
 - ✓ Baseline LWR with NA 0.33
 - \checkmark LWR for each pattern pitch
 - ✓ Chemical cure effect with 22nm-hp
 - ✓ Chemical cure effect with 32nm-hp
 - ✓ Progress of LWR improvements
- Summary

Background ~Improvement Learning~

Goal

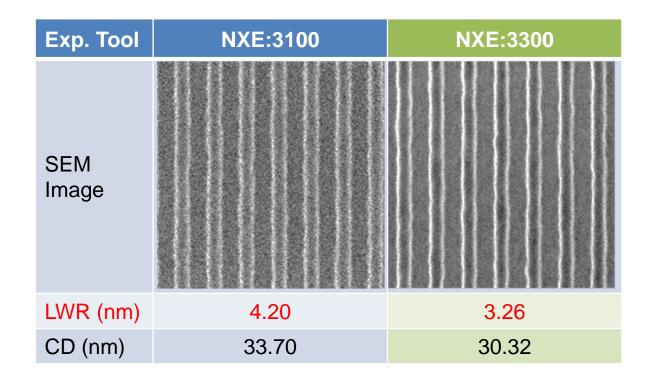
Experimental

Tools

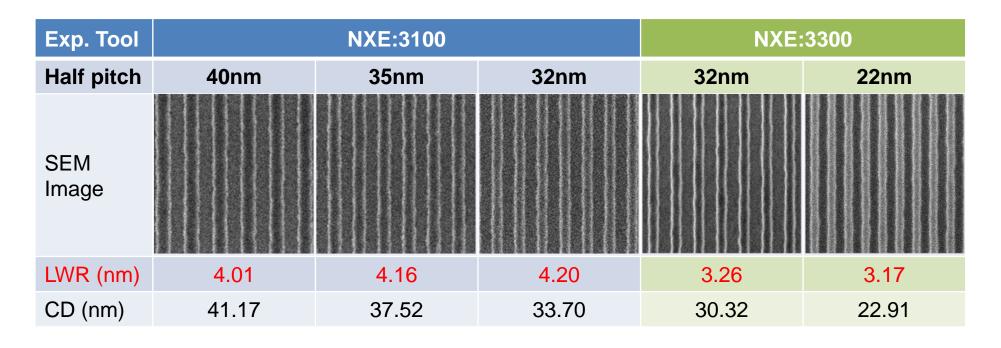

- ✓ Exposure tool: NXE:3100 / NXE:3300
- ✓ Track : SOKUDO DUO
- ✓ CD-SEM : CG5000 (Hitachi High-Tech.)

Materials

Under Layer	EUV Under Layer A @20nm-FT		
	EUV Resist A @ 50nm-FT (32nm-L/S)		
Resist	EUV Resist B @ 50nm-FT (32nm-L/S)		
	@ 40nm-FT for NXE:3300 (22nm-L/S, 32nm-L/S)		
Developer	TMAH 2.38wt%		


Measurement Condition

✓ Magnification : 300k ✓ FOV : 450nm x 450nm ✓ Measurement Point : 32 ✓ Sum Lines / Point : 16 ✓ Method : Threshold ✓ Smoothing :7 \checkmark Differential :5 ✓ Search Area : 400


Baseline LWR with NA 0.33

LWR was improved about 20% by NA 0.33, even though the resist film thickness and the reticle were different.

Multiple pattern pitches

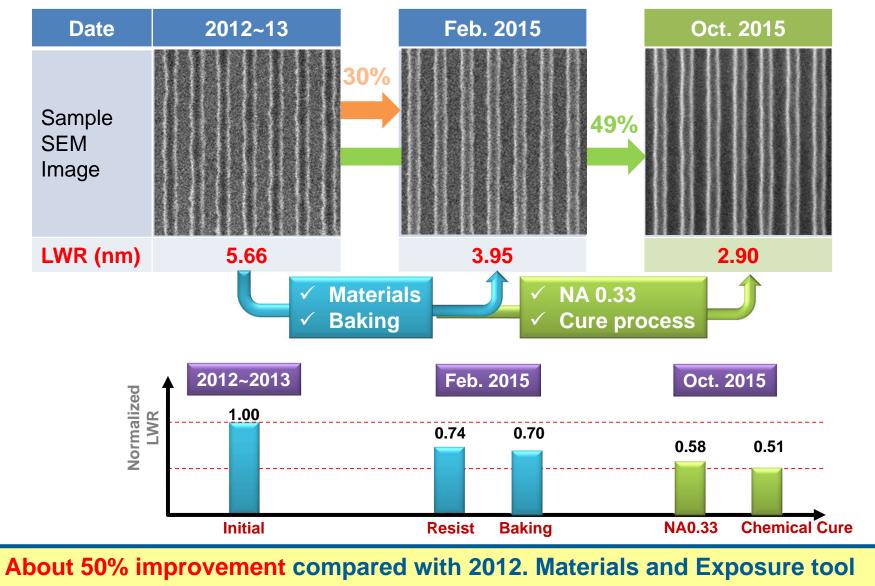
- LWR for each pattern pitch was almost all the same, slightly better with larger pitch.
- LWR was significantly improved about 20% with NXE:3300, even 22nm-hp.

Chemical Cure Improvement – 22nm HP

Process	Initial	Condition 1 (soft)	Condition 2 (middle)	Condition 3 (strong)
SEM Image				
LWR (nm)	3.17*	2.91	2.91	2.80
Improvement rate		7.8%	8.2%	11.6%
CD (nm)	22.91*	22.94	23.28	24.28

*Mean value of 6 wafers.

- Chemical cure process was effective for LWR improvement, about 11%.
- Stronger conditions for chemical cure resulted in better LWR.


Chemical Cure Improvement – 32nm HP

Process	Initial	Condition 1 (soft)	Condition 2 (middle)	Condition 3 (strong)
SEM Image				
LWR (nm)	3.26	3.21	3.03	2.90
Improvement rate		1.7%	7.3%	11.0%
CD (nm)	30.32	30.67	30.91	33.48

- Chemical cure process was still effective for LWR improvement, about 11%, with the larger pattern pitch.
- Stronger conditions for chemical cure resulted in better LWR.

LWR Improvement Timeline

were big improvement. Also better LWR was obtained by EUV Track process.

Summary

- 50% improvement (5.7nm→2.8nm) compared with 2012.
- Baseline LWR with NA 0.33
 - ✓ LWR was improved about 20% by NA 0.33, even though the resist film thickness and the reticle were different.
- LWR for each pattern pitch.
 - LWR for each pattern pitch was almost all the same, slightly better with larger pitch.

• Effect of Chemical cure process.

- ✓ Chemical cure process was effective for LWR improvement, about 11%.
- ✓ Stronger condition of Chemical cure process had better LWR.

Next Test

- ✓ LWR analysis of high and low frequency
- ✓ Physical cure for 22nm

