EUV process establishment for NXE3300 and beyond

Y. Kuwahara¹, P. Foubert², Ming Mao², A-M. Goethals², S. Kawakami¹, K. Matsunaga¹, K. Nafus¹, Eric Hendrikx²

¹Tokyo Electron Kyushu Ltd. ²imec

Introduction

Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACKTM LITHIUS ProTM Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Limited (TELTM) and imec are continuously collaborating to develop manufacturing quality POR processes for EUV. TELTM has new functionalities to enhance CD uniformity, defectivity and LWR/SWR. The patterning is characterized and optimized in both litho and etch for a more complete understanding standing of the final patterning performance.

CD Uniformity and Defectivity

Extreme[™]10 Extreme[™]A

Height: 21-28nm Height: 25-31nm

	※Extreme [™] is a registered trademark of AZ Electronic Materials.							
			smallest CD [nm]	⊿CD [nm]	LWR [nm]			
	<u>HP 20nm /</u> <u>Resist-A</u>	DIW	17.6	-	7.1			
		Extreme [™] 10 16.8 1.0		1.0	6.8			
		Extreme™A	15.2	-0.2	7.2			
	<u>HP 18nm /</u> <u>Resist-B</u>	DIW	16.7	-	6.9			
		Extreme [™] 10	16.0	1.7	6.4			
		Extreme™A	14.9	0.4	6.9			
	<u>HP 17nm /</u> <u>Resist-C</u>	DIW	16.2	-	8.5			
		Extreme [™] 10	17.6	1.2	8.0			
		Extreme™A	15.2	0.1	8.2			
		A has						

 best smallest CD without pattern collapse for several resist materials below 20nm -Smaller CD change from DIW process than Extreme[™] 10

No negative impact to pattern profile and thickness

Experimental Condition

Coater/Developer

DIW Rinse

ight: 24-29nm

System : CLEAN TRACK[™] LITHIUS Pro[™] Z EUV (Tokyo Electron Ltd.) Resist: EUV resist-A, Film thickness 40nm (L/S), 50nm (CH)

Developer : TMAH

Rinse solution : FIRM[™] Extreme[™]10 and Extreme[™]A

EUV Scanner

System : NXE3300

Illumination : Conventional

Etch

Tactras[™] T4 (Tokyo Electron Ltd.)

Measurement

SEM : Hitachi CG5000

L/S, Defectivity 32nm

▶ Initial data with NXE3300.

- ► ExtremeTMA doesn't have any impact to CDU.
- ► NXE3300 defectivity is comparable with NXE3100, defect analysis is ongoing.

CH, CDU 27nm [Offline process between coater/developer at imec and scanner at ASML]

Defectivity : KLA2835

► ExtremeTMA doesn't have much impact to CDU.

► No rinse process budget for LCDU can be seen.

LWR/SWR

Test Plan

Etch and litho optimization will make line smoother. **Optimization for both treatments combined is underway.**

	24nm HP LS (trench CD)					
	Litho	Etch w/o Cure	Etch w/ Cure			
CD (nm)	26.9	28.2	32.4			
SWR@ 24nm HP LS	5.85	5.84	5.47			
SER@ 24nm HP LS	-	3.74	3.45			

SWR is slightly improved with etch cure

► Targeting correct CD with cure

► Test different cure

Check the combination with etch and litho optimization

Acknowledgement

The authors would like to extend their appreciation to

- ASML demo team

- All assistance of imec
- Tokyo Electron Kyushu Ltd. SPE Process Technology department
- Tokyo Electron Europe Ltd. service team
- Tokyo Electron Miyagi Ltd. Product engineering

Project Overview In comparison LE³ by ArF and EUV,

EUV shows good pattern fidelity, but LWR/SWR is challenge.

193i LE³ vs EUV SP

193i LE³ route

clearly better

Confidential for limited use

patterning fidelity than 193i LE³

rounding **EUV SP offers**

results in corner

PARTNER TECHNICAL

ler		- 7 1-		 	 	
	Resist	Litho Optimizatio	Etch Optimization	Ech	SiO ₂	TiN

Conclusion

- Initial data of L/S 22nm and CH 27nm with NXE3300 were taken.
- New FIRM[™] material Extreme[™]A doesn't have any impact to CDU, but the pattern collapse prevention effect could be seen on 22nm L/S.
- Defect analysis such as L/S 22nm and CH 27nm are needed.
- Further studies towards better CDU, defectivity after litho/etch and LWR/SWR are ongoing.

