

Dual-Wavelength Spectral Purity Filter for EUV Collector Mirrors

Torsten Feigl, Marco Perske, Hagen Pauer, Tobias Fiedler optiX fab GmbH

Uwe Zeitner, Robert Leitel, André Matthes, Marcus Trost, Sven Schröder Fraunhofer IOF

Christian Laubis, Frank Scholze PTB Berlin

Washington, D.C., October 27, 2014

- Introduction
- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

Introduction

- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

optiX fab introduction

- Mission: Fabrication of customized EUV optics and optical components for EUV lithography @ 13.5 nm and beyond, synchrotron and FEL beamlines, metrology, R&D applications, etc.
- Foundation: December 17, 2012, fully operational: August 1, 2013
- Address: optiX fab GmbH
 Hans-Knöll-Str. 6
 D 07745 Jena
- Email: info@optixfab.com
- Production: Delivery of > 3000 EUV multilayer mirrors since Aug 1, 2013
- Team:

4 I 2014 International Symposium on Extreme Ultraviolet Lithography

Multilayer coated collector optics for LPP sources

5 I 2014 International Symposium on Extreme Ultraviolet Lithography

Theoretical reflectance of Mo/Si multilayer for normal incidence

6 | 2014 International Symposium on Extreme Ultraviolet Lithography

EUV LPP collector with dual-wavelength spectral purity filter

7 I 2014 International Symposium on Extreme Ultraviolet Lithography

Dual-wavelength spectral purity filter – proof of principle

- Realization of binary phase gratings on 6 inch Si wafers
- Optimization of grating and coating for AOI = 15 degrees
- Characterization of grating structure by WLI
- Characterization of grating roughness by AFM
- Characterization of optical properties:
 - EUV reflectance at 13.5 nm and
 - IR suppression at 10.6 μm and 1064 nm

Introduction

- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

Spectral Purity Filter for CO_2 laser wavelength: 10.6 μ m

Photographs of grating structure

11 | 2014 International Symposium on Extreme Ultraviolet Lithography

White light interferometry of grating structure

Groove depth

2740 nm

Atomic Force Microscopy of grating bar and groove

ox-0026_nw-05radius_graben_io11..102

rms= 0,13 nm; f13 ox-0026_nw-05radius_steg_io21..105

rms roughness on grating groove: σ_{RMS} = 0.15 nm

rms roughness on grating bar: σ_{RMS} = 0.15 nm

13 | 2014 International Symposium on Extreme Ultraviolet Lithography

EUV reflectance measurement @ PTB Berlin

14 I 2014 International Symposium on Extreme Ultraviolet Lithography

- Introduction
- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

Spectral Purity Filter for YAG laser wavelength: 1064 nm

White light interferometry of grating structure

18 | 2014 International Symposium on Extreme Ultraviolet Lithography

Atomic Force Microscopy of grating bar and groove

rms = 0,22 nm; f13 ox-0017_1cmrand-nw_graben_io11..100 rms= 0,22 nm (0,14 nm); fl3 ox-0017_1cmrand-nw_steg_io11..100

rms roughness on grating groove: σ_{RMS} = 0.22 nm

19 | 2014 International Symposium on Extreme Ultraviolet Lithography

rms roughness on grating bar:

 $\sigma_{\rm RMS}$ = 0.14 nm

optiX fab.

EUV reflectance measurement @ PTB Berlin

20 I 2014 International Symposium on Extreme Ultraviolet Lithography

Introduction

- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

Dual-wavelength Spectral Purity Filter

White light interferometry of grating structure

Atomic Force Microscopy of grating bar and groove

rms = 0.22 nm, F13 ox-0022-mitte-so-graben-graben_io11.100t

rms = 0.15 nm, F13 ox-0022-mitte-so-graben-steg_io11.105t

rms roughness on grating groove: σ_{RMS} = 0.22 nm

25 | 2014 International Symposium on Extreme Ultraviolet Lithography

rms roughness on grating groove:

 $\sigma_{\rm RMS}$ = 0.15 nm

optiX fab.

Atomic Force Microscopy of grating bar and groove

 $\label{eq:rms} \begin{array}{l} \mathsf{rms} = 0.21 \ (0.19) \ \mathsf{nm}, \ \mathsf{Fl3} \\ \mathsf{ox-0022-mitte-so-steg-graben_iol1.101t} \end{array}$

rms = 0.19 (0.18) nm, F13 ox-0022-mitte-so-steg-steg_io11.104t

rms roughness on grating bar: $\sigma_{\rm RMS}$ = 0.19 nm

26 | 2014 International Symposium on Extreme Ultraviolet Lithography

rms roughness on grating bar:

 $\sigma_{\rm RMS}$ = 0.18 nm

optiX fab.

EUV reflectance measurement @ PTB Berlin

27 | 2014 International Symposium on Extreme Ultraviolet Lithography

EUV reflectance measurement @ PTB Berlin

Grating efficiency @ 10.6 µm

Grating efficiency @ 1064 nm

Dual grating efficiency @ 10.6 μ m and 1064 nm

Scanning Electron Microscopy of dual-wavelength SPF

32 | 2014 International Symposium on Extreme Ultraviolet Lithography

Introduction

- Spectral Purity Filter for main pulse CO₂ laser wavelength: 10.6 μm
- Spectral Purity Filter for pre pulse YAG laser wavelength: 1064 μm
- Dual-wavelength Spectral Purity Filter
- Summary and acknowledgement

Demonstration of dual-wavelength Spectral Purity Filter concept on 6" Si wafers

EUV reflectance of 10.6 µm grating structure:	67.0 %	(2.0 % loss)
EUV reflectance of 1064 nm grating structure:	66.6 %	(2.4 % loss)
EUV reflectance of dual-wavelength grating:	64.6 %	(4.5 % loss)
0 th order grating efficiency of 10.6 μm grating: 0 th order grating efficiency of 1064 nm grating:	0.06 % 0 17 %	(1500x suppression)
o order grading enterency of 1004 min grading.	0.17 /0	
O th order efficiency of dual wavelength grating:	0.22 %	(450x suppression)
O th order efficiency of dual wavelength grating:	0.22 %	(450x suppression)

next step: technology extension to curved sub-aperture EUV collectors

34 I 2014 International Symposium on Extreme Ultraviolet Lithography

EUV grating team @ Fraunhofer IOF:

Christoph Damm, Wilko Fuhlrott, Andreas Gebhardt, Mathias Hauptvogel, Tobias Herffurth, Nils Heidler, Robert Jende, Jan Kinast, Roman Loose, Sandra Müller, Thomas Müller, Michael Scheler, Thomas Peschel, Stefan Risse, Mathias Rohde, Steffen Schulze, Ronald Schmidt, Uta Schmidt, Mark Schürmann, Ralf Steinkopf, Sergiy Yulin

EUV reflectivity measurement team @ PTB Berlin

optiX fab.

www.optixfab.com