International Symposium on Extreme Ultraviolet Lithography October 27-29, 2014 • Washington, D.C. 2014 International EUVL Symposium @ Washington D.C., USA **Hakaru Mizoguchi**, Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki, Shinji Okazaki and Takashi Saitou Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN #### LPP Light Source Concept and Component technology - » Pre-pulse Technology - » Collector Mirror and IR Reduction Technology - » Debris Mitigation Technology - » Driver CO2 laser #### Gigaphoton's High Power LPP Light Source System Development - » Output Power Update - » Potential performance - Power-up Scenarios of HVM EUV Light Sources - Summary ### AGENDA ### LPP Light Source Concept and Component technology - » Pre-pulse Technology - » Collector Mirror and IR Reduction Technology - » Debris Mitigation Technology - » Driver CO2 laser ### AGENDA - Gigaphoton's High Power LPP Light Source System Development - » Output Power Update - » Potential performance - Power-up Scenarios of HVM EUV Light Sources - Summary # Gigaphoton's LPP Light Source Concept - High ionization rate and CE EUV Sn plasma generated by CO₂ and solid laser dual shooting - 2. Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers - 3. Accurate shooting control with droplet and laser beam control - 4. Sn debris mitigation with a super conductive magnetic field - High efficient out of band light reduction with grating structured C1 mirror ## **Pre-Pulse Technology (1)** - Based on basic physical consideration and experiments, Gigaphoton has chosen to adopt the pre-pulse technology since 2009 - In 2012 Gigaphoton discovered that shortening the pre-pulses duration dramatically enhance the conversion efficiency in low repetition rate (2Hz). - We are achieving this high Ce operation under high repetition rate, high duty cycle operation condition. #### CO2 pulse enegy vs. EUV-CE # **Pre-Pulse Technology (2)** Experiment shows picosecond pre-pulse dramatically enhances ionization rate and CE #### **Sn Droplet Smash** #### <u>Data in 10 Hz Experimental Device</u> ## **Collector Mirror Technology (1)** #### Collector Mirror progress #### IR Reduction Technology is Advancing Gigaphoton is developing IR reduction mirror in co-operation with multiple mirror suppliers. Gigaphoton's Patent Pending IR Reduction Technology ## **Collector Mirror Technology (2)** #### **Collector mirror status** Collector mirror with grating structure (V5 type) was successfully developed. Efficiency from plasma to clean would be improved from 21.6% to 26.7%. # **Debris Mitigation Technology (1)** Gigaphoton's Magnetic Debris Mitigation concept #### **Higher CE and Power** - Optimum wavelength to transform droplets into fine mist - Higher CE achievement with ideal expansion of the fine mist #### **Long Life Chamber** - Debris mitigation by magnetic field - lonized tin atoms are guided to tin catcher by magnetic field # **Debris Mitigation Technology (2)** Gigaphoton's unique magnetic field + gas etching technology - The collector mirror lifetime (i.e. debris mitigation technology) is one of the key items for reducing cost of consumables for HVM - Gigaphoton's unique technology for debris mitigation: - » Magnetic field to catch Sn ion/atom - » H* gas to etch out Sn atom # **Debris Mitigation Technology (3)** **EUV Light Source for Debris Mitigation Testing** Mounting the collector mirror After 27Mpulse/3days with P(I/F)=10W@20kHz ## **Debris Mitigation Technology (4)** **Debris mitigation: SEM image** | | 2014 Jan | 2014 Apr | 2014 Jun | 2014 Jul. | |--|-------------|--------------|------------------|---------------------| | A1 sample Center of collector mirror SEM x10,000 | 0.1nm/Mpls | 0.075nm/Mpls | 0.003nm/Mpls | 0.002nm/Mpls | | E5 sample
SEM x1,000 | 8.7nm/Mpls | 1.1nm/Mpls | 0.62nm/Mpls | 0.67nm/Mp.ls | | A5 sample
SEM x1,000 | 4.1pm/Mpls | 0.16nm/Mpls | 0.012nm/Mpls | 0.008nm/Mpls | | C6 sample
SEM x1,000
Ion catcher side | 25.1nm/Mpls | 18.8nm/Mpls | 25.9nm/Mpls
— | 9. 9 nm/Mpls | # **Debris Mitigation Technology (5)** ### **Analysis: Tin Ion Catcher** - Tin depositions re-introduced from the ion catcher accumulates on the collector mirror - We are improving the tin ion catcher mechanism to address this issue **Tim Deposition Simulation** **Actual Tin Deposited on Collector** # CO₂ laser driver Technology (2) ### CO₂ laser driver system test result - LPP Light Source Concept and Component technology - » Pre-pulse Technology - » Collector Mirror and IR Reduction Technology - » Debris Mitigation Technology - » Driver CO2 laser ### AGENDA - Gigaphoton's High Power LPP Light Source System Development - » Output Power Update - » Potential performance - Power-up Scenarios of HVM EUV Light Sources - Summary ### High Power EUV Light Source of Gigaphoton Proto type of high power EUV light sources are in operation Proto 1 Exposure & Mitigation test Proto 2 High power Experiment # **Proto Systems in Operation** Target System Specifications | Operational Specification | | Proto #1 | Proto #2 | Customer Beta Unit | | |---------------------------|-------------------|--|-------------------------------|-------------------------------|--| | | EUV Power | 25 W | 100 W | 250 W | | | Target
Performance | CE | 3% | 4% | 4% | | | | Pulse rate | 100 kHz | 100 kHz | 100 kHz | | | | Output angle | Horizontal | 62° upper
(matched to NXE) | 62° upper
(matched to NXE) | | | | Availability | 1 week operation | 1 week operation | > 75% | | | Droplet generator | | 20 – 25 μm | 20 μm | < 20 μm | | | Technology | CO2 laser | > 8 kW | > 12 kW | 25 kW | | | | Pre-pulse laser | picosecond | picosecond | picosecond | | | | Debris mitigation | validation of magnetic
mitigation in system | 10 days | 15 days | | # **Driver Laser System Configuration** - Proto#1 - » 5kW CO2 power at 100kHz by 2 MA CO2 laser system. - Proto#2 - » 17kW CO2 power at 100kHz by 3 MA CO2 laser system. - » Target is > 100W EUV clean power. - Pilot#1 (Designing) - » 25kW CO2 power at 100kHz by using Mitsubishi amplifier system. - » Target is 250W EUV clean power ### 20kHz, 50% D/C: EUV power operation data 42W in burst, 21W average (42W x 50%) output power for 3hours (110Mpls) | Rep.rate | 20kHz | | | |--------------------|-------------------|--|--| | EUV energy (ave.) | 9.79mJ | | | | IF power @ clean | 42W | | | | CO2 energy(ave.) | 273mJ | | | | CE | 3.6% | | | | EUV stability (3s) | 14% | | | | Pulse number | 110Mpls | | | | DLG | CJ1551-3 | | | | Droplet.diameter | 25um | | | | Droplet.spacing | 500um | | | | DL catcher | Туре С | | | | lon catcher | Type D
(L=200) | | | Copyright (C) 2014 Gigaphoton Inc. ### 60kHz, 70% D/C: EUV power operation data - 118W output with 3.7%CE, 60kHz, 70% duty cycle (Clean power in burst) - 83W (=118W x 70%) output in average power. # Potential of higher duty cycle operation ### Potential of higher repetition rate operation ### EUV average power improvement and potential Note: C1 mirror was changed to V5 from V3. | | | 2014 May | 2014 Jun | 2014 Sep | 2014 Oct | Potential | |--------------------|---------------------------------|-------------|----------|----------|----------|-------------| | | | Proto#2 | Proto#2 | Proto#2 | Proto#2 | performance | | EUV
performance | EUV average
power | 3W | 46W | 21W | 83W | (112W) | | | EUV clean power | 60W | 92W | 42W | 118W | (140W) | | | Duty cycle | 5% | 50% | 50% | 70% | 80% | | | Repetition rate | 50kHz | 50kHz | 20kHz | 60kHz | 70kHz | | | CE | 3.7% | 4.2% | 3.6% | 3.7% | 3.7% | | | Operation time | - | - | 3hour | 10min | | | System | Collector | V3 | V3 | V3 | V5 | V5 | | parameter | Efficiency from plasma to clean | 21.6% | 21.6% | 21.6% | 31.6% | 31.6% | | | H2 | <i>7</i> Pa | 7Pa | 7Pa | 11Pa | 11Pa | | | CO2 power | 7.6kW | 10kW | 5.4kW | 10.2kW | 10.2kW | Remark: EUV average power = EUV clean power x duty cycle, open loop F/B Out of band DUV filter condition was revised sinse Oct.2014 data ### LPP Light Source Concept and Component technology - » Pre-pulse Technology - » Collector Mirror and IR Reduction Technology - » Debris Mitigation Technology - » Driver CO2 laser ### AGENDA - Gigaphoton's High Power LPP Light Source System Development - » Output Power Update - » Potential performance - Power-up Scenarios of HVM EUV Light Sources - Summary ## **EUV Power achievement and Target** ### Power-up Scenario of Driver Laser System Next target is 12 kW by upgrading the pre-amplifier (installation is on going now) ### Power-up Scenario of HVM Sources We are achieving solid and steady progress towards realizing our HVM EUV source | | | | | Next Target | Pilot #1 | |---------------------------------|--------------------------------|--------------------------------|-------------------------------------|---------------------------------|-----------------------------------| | EUV clean power | 25W | 43W | 118W | 150W | 250W | | Target | 2013, Q4 | 2014, Q1 | 2014,Q3 | 2014,Q4 | 2015,Q2 | | CO ₂ power at plasma | 5kW | 8kW | 10.2kW | >14kW | > 20kW | | CE | 2.5% | 3% | 3.7% | >4.2% | > 4.5% | | Plasma to IF clean | 21.7% | 21.7% | 31.6% | 31.6% | 35.1% | | CO ₂ laser | 2 main amp.
system: Proto#1 | 3 main amp.
system: Proto#2 | Mitsubishi
pre. amp.:
Proto#2 | Mitsubishi pre.
amp :Proto#2 | Mitsubishi
main amp.
system | | Collector mirror | Normal Type | Normal Type | Grating Type | Grating Type | Grating Type | ### LPP Light Source Concept and Component technology - » Pre-pulse Technology - » Collector Mirror and IR Reduction Technology - » Debris Mitigation Technology - » Driver CO2 laser ### AGENDA - Gigaphoton's High Power LPP Light Source System Development - » Output Power Update - » Potential performance - Power-up Scenarios of HVM EUV Light Sources - Summary ### Summary - Progress of component technology; - » Improvement of debris mitigation is reported; 4 hrs. continuous operation, deposition sampled at mirror center area was less than 0.006nm/MPls. - » Improvement data of IR reduction corrector mirror is reported - » Driver CO2 laser power at plasma point is improved from 10kW to 17kW - Verified high output EUV light on Proto#2 unit - » New Data: 118W (CE3.7%) x 70%duty, 83W average power x10min - » and 42Wx3hours, clean output at IF under 50%Duty* were reported. - » Next step is to enable higher duty cycle and higher repetition rate operations. Potential data is reported. - Design of the development pilot#1 is reported. ^{*} Percentage of EUV emission during operation # **Acknowledgements** #### Thanks for your co-operation: **Mitsubishi electric CO₂ laser amp. develop. team:** *Dr. Yoichi Tanino*,* Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others. * The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much. Collector mirror suppliers – especially Rigaku for providing us with useful data Dr. Akira Endo: HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in **Kyushu University** Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University #### Thanks for you funding: EUV source development funding is partially support by **NEDO in JAPAN** #### Thanks to my colleagues: **EUV development team of Gigaphoton;** Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers. # **Thank You**