International Symposium on Extreme Ultraviolet Lithography

October 27-29, 2014 • Washington, D.C.

2014 International EUVL Symposium @ Washington D.C., USA

Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki, Shinji Okazaki and Takashi Saitou

Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN

LPP Light Source Concept and Component technology

- » Pre-pulse Technology
- » Collector Mirror and IR Reduction Technology
- » Debris Mitigation Technology
- » Driver CO2 laser

Gigaphoton's High Power LPP Light Source System Development

- » Output Power Update
- » Potential performance
- Power-up Scenarios of HVM EUV Light Sources
- Summary

AGENDA

LPP Light Source Concept and Component technology

- » Pre-pulse Technology
- » Collector Mirror and IR Reduction Technology
- » Debris Mitigation Technology
- » Driver CO2 laser

AGENDA

- Gigaphoton's High Power LPP Light Source System Development
 - » Output Power Update
 - » Potential performance
- Power-up Scenarios of HVM EUV Light Sources
- Summary

Gigaphoton's LPP Light Source Concept

- High ionization rate and CE EUV Sn plasma generated by CO₂ and solid laser dual shooting
- 2. Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers
- 3. Accurate shooting control with droplet and laser beam control
- 4. Sn debris mitigation with a super conductive magnetic field
- High efficient out of band light reduction with grating structured C1 mirror

Pre-Pulse Technology (1)

- Based on basic physical consideration and experiments, Gigaphoton has chosen to adopt the pre-pulse technology since 2009
- In 2012 Gigaphoton discovered that shortening the pre-pulses duration dramatically enhance the conversion efficiency in low repetition rate (2Hz).
- We are achieving this high Ce operation under high repetition rate, high duty cycle operation condition.

CO2 pulse enegy vs. EUV-CE

Pre-Pulse Technology (2)

Experiment shows picosecond pre-pulse dramatically enhances ionization rate and CE

Sn Droplet Smash

<u>Data in 10 Hz Experimental Device</u>

Collector Mirror Technology (1)

Collector Mirror progress

IR Reduction Technology is Advancing

Gigaphoton is developing IR reduction mirror in co-operation with multiple mirror suppliers.

Gigaphoton's Patent Pending IR Reduction Technology

Collector Mirror Technology (2)

Collector mirror status

Collector mirror with grating structure (V5 type) was successfully developed. Efficiency from plasma to clean would be improved from 21.6% to 26.7%.

Debris Mitigation Technology (1)

Gigaphoton's Magnetic Debris Mitigation concept

Higher CE and Power

- Optimum wavelength to transform droplets into fine mist
- Higher CE achievement with ideal expansion of the fine mist

Long Life Chamber

- Debris mitigation by magnetic field
- lonized tin atoms are guided to tin catcher by magnetic field

Debris Mitigation Technology (2)

Gigaphoton's unique magnetic field + gas etching technology

- The collector mirror lifetime (i.e. debris mitigation technology) is one of the key items for reducing cost of consumables for HVM
- Gigaphoton's unique technology for debris mitigation:
 - » Magnetic field to catch Sn ion/atom
 - » H* gas to etch out Sn atom

Debris Mitigation Technology (3)

EUV Light Source for Debris Mitigation Testing

Mounting the collector mirror

After 27Mpulse/3days with P(I/F)=10W@20kHz

Debris Mitigation Technology (4)

Debris mitigation: SEM image

	2014 Jan	2014 Apr	2014 Jun	2014 Jul.
A1 sample Center of collector mirror SEM x10,000	0.1nm/Mpls	0.075nm/Mpls	0.003nm/Mpls	0.002nm/Mpls
E5 sample SEM x1,000	8.7nm/Mpls	1.1nm/Mpls	0.62nm/Mpls	0.67nm/Mp.ls
A5 sample SEM x1,000	4.1pm/Mpls	0.16nm/Mpls	0.012nm/Mpls	0.008nm/Mpls
C6 sample SEM x1,000 Ion catcher side	25.1nm/Mpls	18.8nm/Mpls	25.9nm/Mpls —	9. 9 nm/Mpls

Debris Mitigation Technology (5)

Analysis: Tin Ion Catcher

- Tin depositions re-introduced from the ion catcher accumulates on the collector mirror
- We are improving the tin ion catcher mechanism to address this issue

Tim Deposition Simulation

Actual Tin Deposited on Collector

CO₂ laser driver Technology (2)

CO₂ laser driver system test result

- LPP Light Source Concept and Component technology
 - » Pre-pulse Technology
 - » Collector Mirror and IR Reduction Technology
 - » Debris Mitigation Technology
 - » Driver CO2 laser

AGENDA

- Gigaphoton's High Power LPP Light Source System Development
 - » Output Power Update
 - » Potential performance
- Power-up Scenarios of HVM EUV Light Sources
- Summary

High Power EUV Light Source of Gigaphoton

Proto type of high power EUV light sources are in operation

Proto 1 Exposure & Mitigation test

Proto 2 High power Experiment

Proto Systems in Operation

Target System Specifications

Operational Specification		Proto #1	Proto #2	Customer Beta Unit	
	EUV Power	25 W	100 W	250 W	
Target Performance	CE	3%	4%	4%	
	Pulse rate	100 kHz	100 kHz	100 kHz	
	Output angle	Horizontal	62° upper (matched to NXE)	62° upper (matched to NXE)	
	Availability	1 week operation	1 week operation	> 75%	
Droplet generator		20 – 25 μm	20 μm	< 20 μm	
Technology	CO2 laser	> 8 kW	> 12 kW	25 kW	
	Pre-pulse laser	picosecond	picosecond	picosecond	
	Debris mitigation	validation of magnetic mitigation in system	10 days	15 days	

Driver Laser System Configuration

- Proto#1
 - » 5kW CO2 power at 100kHz by 2 MA CO2 laser system.
- Proto#2
 - » 17kW CO2 power at 100kHz by 3 MA CO2 laser system.
 - » Target is > 100W EUV clean power.
- Pilot#1 (Designing)
 - » 25kW CO2 power at 100kHz by using Mitsubishi amplifier system.
 - » Target is 250W EUV clean power

20kHz, 50% D/C: EUV power operation data

42W in burst, 21W average (42W x 50%) output power for 3hours (110Mpls)

Rep.rate	20kHz		
EUV energy (ave.)	9.79mJ		
IF power @ clean	42W		
CO2 energy(ave.)	273mJ		
CE	3.6%		
EUV stability (3s)	14%		
Pulse number	110Mpls		
DLG	CJ1551-3		
Droplet.diameter	25um		
Droplet.spacing	500um		
DL catcher	Туре С		
lon catcher	Type D (L=200)		

Copyright (C) 2014 Gigaphoton Inc.

60kHz, 70% D/C: EUV power operation data

- 118W output with 3.7%CE, 60kHz, 70% duty cycle (Clean power in burst)
- 83W (=118W x 70%) output in average power.

Potential of higher duty cycle operation

Potential of higher repetition rate operation

EUV average power improvement and potential

Note: C1 mirror was changed to V5 from V3.

		2014 May	2014 Jun	2014 Sep	2014 Oct	Potential
		Proto#2	Proto#2	Proto#2	Proto#2	performance
EUV performance	EUV average power	3W	46W	21W	83W	(112W)
	EUV clean power	60W	92W	42W	118W	(140W)
	Duty cycle	5%	50%	50%	70%	80%
	Repetition rate	50kHz	50kHz	20kHz	60kHz	70kHz
	CE	3.7%	4.2%	3.6%	3.7%	3.7%
	Operation time	-	-	3hour	10min	
System	Collector	V3	V3	V3	V5	V5
parameter	Efficiency from plasma to clean	21.6%	21.6%	21.6%	31.6%	31.6%
	H2	<i>7</i> Pa	7Pa	7Pa	11Pa	11Pa
	CO2 power	7.6kW	10kW	5.4kW	10.2kW	10.2kW

Remark: EUV average power = EUV clean power x duty cycle, open loop F/B
Out of band DUV filter condition was revised sinse Oct.2014 data

LPP Light Source Concept and Component technology

- » Pre-pulse Technology
- » Collector Mirror and IR Reduction Technology
- » Debris Mitigation Technology
- » Driver CO2 laser

AGENDA

- Gigaphoton's High Power LPP Light Source System Development
 - » Output Power Update
 - » Potential performance
- Power-up Scenarios of HVM EUV Light Sources
- Summary

EUV Power achievement and Target

Power-up Scenario of Driver Laser System

Next target is 12 kW by upgrading the pre-amplifier (installation is on going now)

Power-up Scenario of HVM Sources

We are achieving solid and steady progress towards realizing our HVM EUV source

				Next Target	Pilot #1
EUV clean power	25W	43W	118W	150W	250W
Target	2013, Q4	2014, Q1	2014,Q3	2014,Q4	2015,Q2
CO ₂ power at plasma	5kW	8kW	10.2kW	>14kW	> 20kW
CE	2.5%	3%	3.7%	>4.2%	> 4.5%
Plasma to IF clean	21.7%	21.7%	31.6%	31.6%	35.1%
CO ₂ laser	2 main amp. system: Proto#1	3 main amp. system: Proto#2	Mitsubishi pre. amp.: Proto#2	Mitsubishi pre. amp :Proto#2	Mitsubishi main amp. system
Collector mirror	Normal Type	Normal Type	Grating Type	Grating Type	Grating Type

LPP Light Source Concept and Component technology

- » Pre-pulse Technology
- » Collector Mirror and IR Reduction Technology
- » Debris Mitigation Technology
- » Driver CO2 laser

AGENDA

- Gigaphoton's High Power LPP Light Source System Development
 - » Output Power Update
 - » Potential performance
- Power-up Scenarios of HVM EUV Light Sources
- Summary

Summary

- Progress of component technology;
 - » Improvement of debris mitigation is reported; 4 hrs. continuous operation, deposition sampled at mirror center area was less than 0.006nm/MPls.
 - » Improvement data of IR reduction corrector mirror is reported
 - » Driver CO2 laser power at plasma point is improved from 10kW to 17kW
- Verified high output EUV light on Proto#2 unit
 - » New Data: 118W (CE3.7%) x 70%duty, 83W average power x10min
 - » and 42Wx3hours, clean output at IF under 50%Duty* were reported.
 - » Next step is to enable higher duty cycle and higher repetition rate operations. Potential data is reported.
- Design of the development pilot#1 is reported.

^{*} Percentage of EUV emission during operation

Acknowledgements

Thanks for your co-operation:

Mitsubishi electric CO₂ laser amp. develop. team: *Dr. Yoichi Tanino*,* Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much.

Collector mirror suppliers – especially Rigaku for providing us with useful data

Dr. Akira Endo: HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University

Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in **Kyushu University**

Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Thanks for you funding:

EUV source development funding is partially support by **NEDO in JAPAN**

Thanks to my colleagues:

EUV development team of Gigaphoton; Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.

Thank You

