

EUV Process improvements on Track system

Masahiko Harumoto, *Harold Stokes, *Yan Thouroude, Osamu Tamada, Tadashi Miyagi, Koji Kaneyama, Charles Pieczulewski and Masaya Asai

* Dainippon Screen (Deutschland) GmbH

Poster Session: P-RE-11
International Symposium on Extreme Ultraviolet Lithography 2014
Monday 27 October / Washington, D.C.

Outline

♦ Goal

Experimental

Process conditions and metrology

Results and Discussions

- Coating Stability for Ultra-thin UL
- CD Uniformity for L/S
- CD Unifromity for C/H
- Defectivity: 'Bridge' types defect improving
- Defect Classification
- LWR Improvement : Hard Baking and Surfactant Rinse
- LWR Improvement : for C/H

♦ Conclusions

Goal

♦ Baseline for EUV Track Process

- ✓ Coating uniformity and defectivity for Ultra-thin Under Layer.
- ✓ CD uniformity for L/S and C/H.
- ✓ Defect review with full field exposure.
- ✓ LWR improvement.

Experimental

Target thickness and CD

✓ Film Coating : 10nm and 20nm (UL)

50nm (Resist) for L/S and 60nm (Resist) for C/H

✓ CD Uniformity for L/S✓ Defectivity∴ 32nm L/S

✓ Local CD Uniformity for C/H : 30nm-Hole / 60nm-Pitch (Bias 20%)

✓ LWR improvement : 32nm L/S

◆ Materials

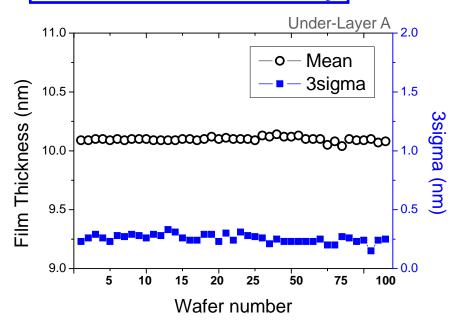
Under Layer	Under Layer A @10nm-FT		
	Under Layer B @ 10nm-FT		
	Under Layer C @ 20nm-FT		
Resist	Resist A @ 50nm-FT (L/S)		
	Resist B @ 50nm-FT (L/S), 60nm-FT (C/H)		
	Resist C @ 50nm-FT (L/S), 60nm-FT (C/H)		
	Resist D @ 50nm-FT (L/S)		
Developer	TMAH 2.38wt%		

Metrology

✓ Film thickness : SCD-100 (KLA-Tencor)

✓ CD Measurement : CG-4000, CG-5000 (Hitachi High-Tech)

✓ Defect inspection : SP3 (KLA-Tencor)


KLA2835 (KLA-Tencor)

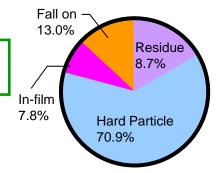
✓ Defect Review : RS-6000 (Hitachi High-Tech)

Coating Stability for Ultra-thin UL

Film Thickness Stability

Film Thickness :10.10nm 3sigma mean : 0.25nm

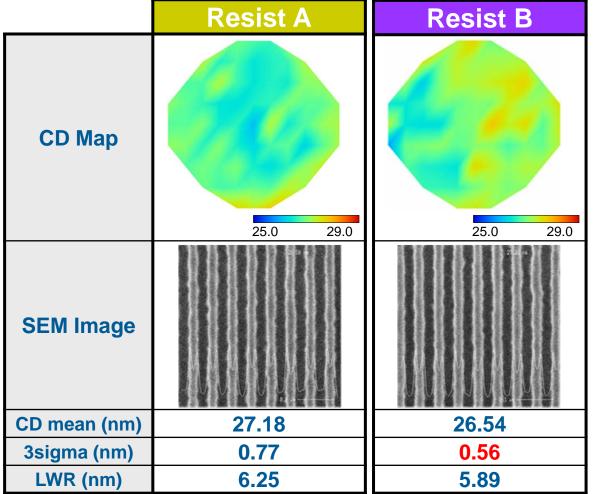
*100 wafers were coated. FT of all wafers were measured in Lot-1. Selected 6 wafers were measured in Lot2, 3 and 4.


Coating Defectivity

Under-Layer A

Defect type	Residue	Hard particle	In-film	Fall on
SEM	FOV:675nm			
image	*	3	(8)	
Ratio	8.7%	70.9%	7.8%	13.0%

Defect Density : 0.01/cm²
Major Defect : Hard Particle


*Defect inspection : SP3 @42nm-up

Excellent long term stability and lower defectivity.

CD Uniformity for LS

Under-Layer: Under-Layer C @20nm-FT

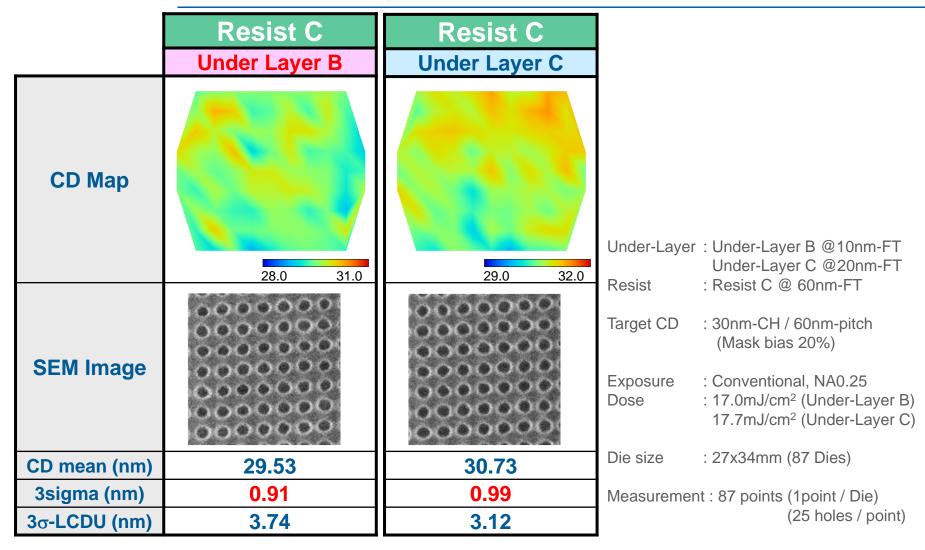
Resist : Resist A @50nm-FT

Resist B @50nm-FT

Target CD: 27nm half pitch

Exposure : Conventional, NA 0.25 Dose : 12.7mJ/cm² (Resist A)

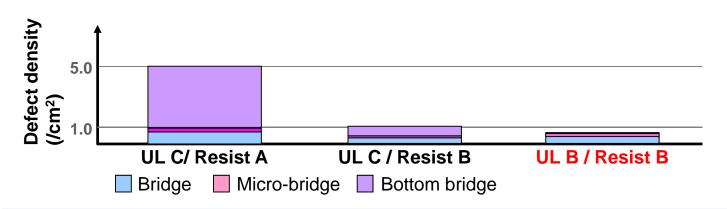
13.1mJ/cm² (Resist B)


Die size : 26x33mm (71 Dies)

Measurement: 213 points (3points / Die)

- ♦ Resist-B was better than Resist-A.
- ◆ 3sigma 0.56nm was achieved.

CD Uniformity for CH



♦ 3sigma <1.0nm was achieved.

Defectivity: 'Bridge' types defect improving

	Resist A	Resist B]	
	Under Layer C		Under Layer B		
Defect Map				Under-Layer Resist Target CD Exposure Dose	: B @10nm-FT : C @20nm-FT : A @50nm-FT B @50nm-FT : 32nm-hp : Conv. NA 0.25 : A 10.8mJ/cm ² B 12.1mJ/cm ²
Total D.D. (/cm²)	4.99	1.18	0.74 (259 ea.)	Die size	: 26x33mm (71 Dies)
Bottom-bridge	4.03	0.67	0.03 (9 ea.)	Inspection	: 55 Dies

◆ "Bottom-bridge"; 0.03/cm² defect density was achieved.

Defect Classification

	Resist A	Resist A Resi		
	Under Layer C		Under Layer B	
Bridge	FOV : 337.5nm	FOV : 337.5nm	FOV : 337.5nm	
D.D. (/cm ²)	0.93	0.38	0.54	
Micro-bridge), (
D.D. (/cm ²)	0.03	0.13	0.17	
Bottom- bridge				
D.D. (/cm ²)	4.02	0.67	0.03	

Under-Layer : B @10nm-FT

: C @20nm-FT

Resist : A @50nm-FT

B @50nm-FT

Target CD : 32nm-hp

Exposure : Conv. NA 0.25 Dose : A 10.8mJ/cm²

B 12.1mJ/cm²

Die size : 26x33mm

(71 Dies)

Inspection : 55 Dies

SEM Review : Random 200defects

- ◆ "Bottom-bridge" was reduced by Resist B.
- ◆ "Bottom-bridge" was significantly reduced by Under Layer B.

LWR: Hard Baking and Surfactant Rinse

Process	POR	Hard Baking	Surfactant Rinse	Surfactant Rinse / Hard Baking
SEM Image				
LWR (nm)	4.16	3.95	4.06	3.98
Improvement rate	-	5.09%	2.44%	4.34%
CD (nm)	33.16	33.29	34.23	34.28

- ◆ Hard baking process has a small impact for LWR improvement.
- ◆ Surfactant rinse process has also a small impact for LWR.

Under-Layer : C @20nm-FT Resist : D @50nm-FT

Target CD : 32nm-hp Exposure : Conv. NA 0.25 Dose : 27.0mJ/cm²

Die size : 26x33mm (71 Dies) Measurement : 284points (4points/Die)

LWR: Additional Annealing Process

Resist	Resist C		Resist B		
Process	Initial	Initial Additional Initial		Additional	
SEM Image					
LWR (nm)	5.70	4.37	5.62	5.25	
Improvement rate		23.33%		6.58%	
CD (nm)	35.88	37.17	35.32	35.70	

- Additional annealing process has a big impact for LWR, 23% improvement on Resist C.
- ◆ Additional annealing process has a different effect depended on resist types.

Under-Layer : C @20nm-FT Resist : B @50nm-FT

C @50nm-FT

Target CD : 32nm-hp

Exposure : Conv. NA 0.25 Dose : B 12.1mJ/cm²

C 13.1mJ/cm²

Die size : 26x33mm (71 Dies) Measurement : 284points (4points/Die)

Conclusions

Coating stability

✓ Excellent stability was confirmed.

♦ CD uniformity

- ✓ L/S 27nm :3sigma 0.56nm was achieved.
- √ C/H 30nm :3sigma 0.91nm was achieved.

Defectivity

- ✓ "Bottom-bridge" was significantly improved by Under-Layer B.
- √ "Bottom-bridge" Defect density of 0.03/cm² was achieved.

LWR improvement

- ✓ Hard baking and Surfactant rinse process have a small impact for LWR improvement.
- ✓ Additional annealing process has a big impact for LWR, 23% improvement on Resist C.

♦ Future

- ✓ "Bridge" reduction
- ✓ LWR improvement using Additional annealing process on Resist D.

Acknowledgement

The authors also would like to thank Material suppliers for supplying the EUV resists and EUV under-layers.

SCREEN