

Advanced Mask Inspection Technologies for 22 nm and Beyond

Tetsuya Yamamoto, Gregg Inderhees, Dan Wack

October 8, 2013

Agenda

- Motivation
- Latest Reticle Inspection Advances
- Latest EUV Inspection Results
- EUV Actinic Patterned and Blank Mask Inspector Introduction
- Summary

Motivation

Provide mask inspection solution to enable advanced patterning technologies

Table LITH6 EUVL Mask Requirements					
Year of Production	2013	2014	2015	2016	2017
DRAM ½ pitch (nm)	28	25	23	20	18
DRAM/Flash CD control (3 sigma) (nm)	2.9	2.6	2.3	2.1	1.9
Flash ½ pitch (nm) (un-contacted poly)	18	17	15	14	13
MPU/ASIC Metal 1 (M1) ½ pitch (nm)(contacted)	27	24	21	19	17
MPU gate in resist (nm)	28	25	22	20	18
MPU physical gate length (nm)	20	18	17	15	14
Gate CD control (3 sigma) (nm)	2.1	1.9	1.7	1.6	1.5
Overlay (3 sigma) (nm) [R]	5.4	4.8	4.2	3.8	3.4
Contact in resist (nm)	28	25	23	20	18
Generic Mask Requirements				•	
Mask magnification [A]	4	4	4	4	4
Mask nominal image size (nm) [B]	112	100	89	79	71
Mask minimum primary feature size [C]	78	70	62	55	49
Image placement (nm, multipoint) [D]	3.2	2.9	2.5	2.3	2.0
CD uniformity (nm, 3 sigma) [E]					
Isolated lines (MPU gates)	2.6	2.4	2.1	2.0	1.8
Dense lines DRAM (half pitch)	2.0	1.8	1.6	1.4	1.3
Contact/vias	1.6	1.4	1.2	1.1	1.0
Linearity (nm) [F]	4.3	3.8	3.4	3.0	2.7
CD mean to target (nm) [G]	2.3	2.0	1.8	1.6	1.4
Defect size (nm)	23	20	18	16	14

Capture "Known" and "Unknown" defects

- Boost defect signal with illumination
- New detector development for new types

• Reduce "Nuisance"

- More complex modeling Error reduction
- Reduce imaging and system noise

Latest Reticle Inspection Solution

- EUV patterned masks and blanks
 - The best pattern sensitivity
 - Industry benchmark Blank mode (Phasur)
- Optical; Complex OPC, Quartz etch reticles
- For ≥ 10nm Generation

Teron 630

Industry proven sensitivity for advanced optical and EUV Mask inspector

Recap From PMJ 2013

Teron 630 Technology Advances discussed

Latest Reticle Inspection Advances

Teron 630 Series for 10nm / 1xhp Generation – Optical and EUV

Latest Database Modeling Advances

new Gen3 modeling for EUV, quartz etch, complex OPC

- Advanced physics-based 3D modeling
- Models complex EUV and quartz etch illumination physics
- Low errors for best defect detection SNR find small defects
- Optimized for high speed reticle inspection (10x10cm in ~2hr)
- Extendable to standard optical reticles with aggressive OPC

Latest Reticle Inspection Imaging Advances

Imaging advances to boost defect signal / reduce noise

- Flexible imaging conditions NA, sigma, pupil, polarization
- · Reduced aberrations, vibration, focus error
- EUV demonstrated applicable to optical

Latest Defect Detector Advances

Detect emerging reticle defect types - local CD, shift, etc.

- Detect reticle defects with ≥10% ΔCD/CD litho impact
- new detectors for emerging defect types
- local CD defects single or multiple
- · mis-placed geometry defect (shift)
- · CD or shift defect stripes
- Detectors for blank masks
 - particles
 - pits and bumps

630 Flexible Apertures

10 Photomack Jagandorb Section 100 16-19 Spr2015 Yokuhana, Jagan

KLA Tencor

Latest Database Modeling Advances

new Gen3 modeling for EUV, quartz etch, complex OPC

- Advanced physics-based 3D modeling
- Models complex EUV and quartz etch illumination physics
- Low errors for best defect detection SNR find small defects
- Optimized for high speed reticle inspection (10x10cm in ~2hr)
- Extendable to standard optical reticles with aggressive OPC

Latest EUV Die-to-Die Algorithm Advances

- New Advanced EUV Die-to-Die Algorithm developed
 - In-house testing completed
 - Recent Beta site installation
- Technical advances for die-to-die
 - Optimized imaging OAI and polarization
 - New autofocus method reduces false
 - EUV defect detectors
- Sensitivity expected to meet process development requirements

Latest Phasur (EUV Blank) Mode Advances

Joint work with blank & pattern generator supplier

 New, very flexible alignment algorithm for Phasur

- Accommodate cross, square box, or Lshaped alignment target
 - Requires only one corner
 - Minimum width 3 um
 - Maximum width / length unlimited
- Templates can be stored and re-used easily
- Scale and orthogonality errors are corrected
 Enabling defect location accuracy improvement

ML Phase Defect Location Accuracy Advances

<u>Location</u> <u>Accuracy (nm)</u>	Timing	<u>Change</u>	<u>Platform</u>
~ 1000 - 3000	Q4 CY10	Initial capability	610
~ 200 - 250	Q2 CY11	2 pt alignment (plate rotation)	610
~ 100 -120	Q4 CY12	3 pt alignment, scale, ortho compensation, template matching	610 / 630
~ 50	1H CY14	HW improvements	630
~ 30	1H CY15	Algorithm / sw development	630

Continuous improvements to support industry needs

630 EUV Die-to-database Sensitivity Verification based on 10% ACD Wafer Print-line

Advanced EUV Sensitivity Verification Mask Test Results

6x nm Pitch Via 630 EUVdb vs. wafer print line

Sensitivity setting – less than 44 off-grid false / nuisance

630 EUVdb meeting wafer print line sensitivity Continues to further improve sensitivity to meet all requirements

db or DDB = die-to-database

Mar-2013

EUV Die-to-DB, Die-to-Die Sensitivity Characterization

EUV Die-to-Die results looks promising. Further study planned with partner

100% capture

Low capture

Moderate capture

Teron 630 Phasur (Blank) Mode Sensitivity Validation Sensitivity Validations – 23 SEVD confirmed

Performance validated by many – Samsung, Intel, Toppan, Hoya, etc.

Phasur is available now and used for process development

Particle Mode Sensitivity Characterization

High capture rate down to 30 nm size

SiO2 on Quartz

SiO2 on Quartz				
Particle size	Color	Capture rate		
90	Dark Blue	100		
70	Yellow	99.5		
60	Orange	99.9		
55	Green	99.7		
50	Bright Pink	99.8		
45	Blue	99.6		
40	Light Blue	99.9		
35	Pink	100		
30	White	100		

SiO2 on ML

SiO2 on ML		
SiO2 Size	Capture rate	
90 nm	100%	
70	100%	
60	100%	
55	100%	
50	100%	
45	100%	
40	100%	
35	High capture	
30	High capture	

EUV Actinic Patterned Mask and Blank Inspection Tool

- EUV actinic inspection is a must for EUVL High Volume Manufacturing due to:
 - Phase defects
 - Contamination defects
 - Throughput
 - Through-pellicle inspection

7xx Program

The world's only EUV Actinic Patterned Mask Inspection System

7xx Program Status

Actinic platform requirements

- Target node 16-nm and 11-nm HP node
- Target throughput 2 to 5 hour inspection per mask
- All defect types capture including Phase defects, ML Blank defects,
 Contamination defects which impact wafer patterning

Partnership in place to accelerate Actinic Patterned Mask Inspector production readiness

Summary

- Latest DUV reticle inspector 630 Series released and supporting early EUV defectivity learning
 - platform extensions planned for 10nm / 1xhp generation
- EUV Actinic Patterned and Blank Mask Inspector development in progress with collaboration with key customers
 - target 7nm / 1xhp generation high volume manufacturing and below

