POWER SCALING OF THE XTREME LDP EUV SOURCE

Felix Küpper¹, Jochen Vieker¹, Klaus Bergmann¹, Yusuke Teramoto² and Jeroen Jonkers²

¹Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, 52074 Aachen, Germany ²Xtreme Technologies GmbH, Steinbachstr. 15, 52074 Aachen, Germany <u>www.ilt.fraunhofer.de</u>, felix.kuepper@ilt.fraunhofer.de

SUMMARY

- Optimization of the basic electrical discharge parameters and the introduction of *Tailored Laser Pulses* improves the LDP efficiency by a factor up to *1.8*
- For HVM IF power levels (> 200 W) the LDP technology allows flexible parameter choice (20 kHz $\leq f \leq$ 100kHz , $E_{in} \leq$ 12 J, $CCE \geq$ 1.6%)

LDP PRINCIPLE AND BASICS

- Electrical energy is stored in the capacitor bank $(E_{in}=1/2\ C\cdot U^2)$
- Tin is evaporated from the electrode surface by laser pulse(s)
- The electrically stored energy is transferred into the tin vapour
- The hot and dense tin discharge plasma emits EUV

Fig. 1: Sketch of the Xtreme LDP source for ASML's 3100 scanner generation

HVM POWER SCALING PARAMETERS

 The LDP technology allows a flexible choice of parameters in order to scale the IF power level

- **P**_{IF} clean EUV power at IF
- **P**_{in} electrical input power
- f discharge repetition rate
- E_{in} energy stored in capacitor bank
- **CE** conversion efficiency
- η_{col} collection efficiency
- T_{opt} optical system transmission
- cce collectable conversion efficiency
- Frequency scaling proven:
 - √ 100 kHz operation shown in proof-of-principle experiment [1]
 - √ 40 kHz operation demonstrated in a 5000 pulses burst [2]
- $-T_{opt}$ dependent on IF aperture size and optical track length
- IF Power scaling by increasing the collectable EUV energy

[1] Wagenaars E et al.: Power scaling of an extreme ultraviolet light source for future lithography, Applied Physics Letters, Volume 92 Issue 18 (2008)

[2] Marc Corthout et al.: *Sn DPP Source Collector Modules for Beta and HVM*, International Symposium on EUVL (Sematech), 28 Sept. – 1 Oct. 2008

MODIFIED B-SOURCE FOR R&D

- Hardware flexibility
- Plasma diagnostics for in-/ band and OoB
- Flexible electrical circuit (capacitance, voltage, inductance)
- Novel prototype laser for / pulse tailoring

Fig. 2: OBELIX2 source as experimental platform for process optimization

SCALING OF THE COLLECTABLE EUV ENERGY

Fig. 3: Collectable EUV energy as function of the input energy (left) and corresponding in-band plasma images for 3 and 10 Joule (right)

- Collectable EUV energy scales linearly with input energy
- Emission volume does not exceed 1.5 mm étendue match
- Champion CCE of 2.1% for 3 J and 1.6% for 10 J achieved
- Further efficiency scaling potential by continuous optimization of the Tailored Laser Pulses identified

PLASMA DYNAMICS OPTIMIZATION

Fig. 4: EUV in-band power evolution in context of the electrically dissipated power (left), instantaneous conversion of electrical power into in-band EUV in context of the discharge current pulse (all measurements: $E_{in} = 5J$)

- The trigger laser defines Sn particle density and dynamics during the electrical discharge → Tailored Laser Pulses
- Optimized match between LCR circuit and plasma dynamics

SPECTRAL EFFICIENCY

Fig. 5: PTB calibrated EUV Spectra recorded for source parameter variations

Spectral purity:

13.5nm (2% b.w.) /	10 - 20 nm	5 - 21nm
3J Tailored Laser	17.6%	16.3%
6J Tailored Laser	17.5%	16.0%
61 Single Laser	13 5%	12 7%

- Up to 1.3x higher spectral efficiency
- Less heat load on scanner optics
- Spectral purity does not change with increasing electrical pulse energy

ACKNOWLEDGEMENTS

This presentation is the result of the collaboration between Xtreme Technologies GmbH (as subsidiary of Ushio) and Fraunhofer ILT on Laser assisted Discharge Plasma (LDP) sources for EUV lithography.

