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HVM POWER SCALING PARAMETERS 

Optimization of the basic electrical discharge parameters and the 

introduction of Tailored Laser Pulses improves the LDP efficiency by 

a factor up to 1.8 
 

 For HVM IF power levels (> 200 W) the LDP technology allows 
flexible parameter choice (20 kHz ≤ f ≤ 100kHz , Ein ≤ 12 J,  CCE ≥ 1.6%)    
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Fig. 1: Sketch of the Xtreme LDP source for ASML’s 3100 scanner generation 

 Electrical energy is stored in the 
capacitor bank (Ein=½ C∙U2) 
 

 Tin is evaporated from the 
electrode surface by laser pulse(s) 
 

 The electrically stored energy is 
transferred into the tin vapour 
 

 The hot and dense tin discharge 
plasma emits EUV 

 The LDP technology allows a flexible choice of parameters in order 
to scale the IF power level 

 
 
 
 
 
 
 
 
 
 
 Frequency scaling proven: 
 100 kHz operation shown in proof-of-principle experiment [1] 

 40 kHz operation demonstrated in a 5000 pulses burst [2] 
 

 Topt dependent on IF aperture size and optical track length 
 

  IF Power scaling by increasing the collectable EUV energy 
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PIF clean EUV power at IF 
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PIF  =  f ∙  Ein ∙  CE ∙  ηcol   ∙  Topt 
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MODIFIED ß-SOURCE FOR R&D 

Fig. 2: OBELIX2 source as experimental platform for process optimization 

 Hardware flexibility 
 

 Plasma diagnostics for in-
band and OoB 
 

 Flexible electrical circuit 
(capacitance, voltage, 
inductance) 
 

 Novel prototype laser for 
pulse tailoring 
 

 Collectable EUV energy scales linearly with input energy 
 

 Emission volume does not exceed 1.5 mm étendue match 
 

 Champion CCE of 2.1% for 3 J and 1.6% for 10 J achieved 
 

 Further efficiency scaling potential by continuous optimization of 

the Tailored Laser Pulses identified  
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PLASMA DYNAMICS  OPTIMIZATION 

 The trigger laser defines Sn particle density and dynamics during 

the electrical discharge  Tailored Laser Pulses 
 

Optimized match between LCR circuit and plasma dynamics   
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Fig. 3: Collectable EUV energy as function of the input energy (left) and   
 corresponding in-band plasma images for 3 and 10 Joule (right) 

Fig. 4: EUV in-band power evolution in context of the electrically dissipated power (left),  
 instantaneous conversion of electrical power into in-band EUV in context of the 
 discharge current pulse (all measurements: Ein = 5J)  

SPECTRAL EFFICIENCY 

ca
th

o
d

e
 

Fig. 5: PTB calibrated EUV Spectra recorded for 
  source parameter variations 

 Spectral purity: 
 
 
 
 
 

 Up to 1.3x higher spectral 
efficiency 
 

 Less heat load on scanner 
optics 
 

 Spectral purity does not 
change with increasing 
electrical pulse energy 

13.5nm ( 2% b.w.)  / 10 - 20 nm   5 - 21nm 

3J Tailored Laser 17.6% 16.3% 

6J Tailored Laser 17.5% 16.0% 

6J Single Laser 13.5% 12.7% 
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