2007 EUVL Symposium

Lithography Optics Division

Optics for EUV Lithography

Martin Lowisch, Peter Kuerz, Thure Boehm, Hans-Juergen Mann, Stephan Muellender, Wolfgang Bollinger, Manfred Dahl, Michael Muehlbeyer, Siegfried Rennon, Frank Rohmund, Udo Dinger, Thomas Stein, and Winfried Kaiser

The optical train – Introduction

Impact of optics on tool performance

Optics Technology: Fabrication of EUV mirrors

2D-isotropic PSD (example)

→ aberrations

→ CDU, overlay

MSFR

→ in field of view scattering: flare

→ CDU

HSFR

→ reduced reflectivity

→ system throughput

The "right" combination of fabrication technologies...

Computer Controlled Polishing for Deterministic Processes

Fast Magneto Rheological Figuring

Ion Beam Figuring:
Atomic Level Figure Control

•The challenge for optics fabrication:

Reduction of the Mid Spatial Frequency Roughness MSFR

... and at the same time reduction of the figure (→ aberration control) and the HSFR (mirror reflectivity → system transmission)

... and improvements in mirror metrology

... enable very low figure values and reduced long wavelength MSFR contributions

20 pm RMS Reproducibility →

- statistical errors (repeatability):
 - E_S = 12 pm RMS surface figure !!!
- statistical errors + adjustment errors (reproducibility): $E_{\perp} = 20 \text{ pm RMS surface figure } !!!$

New result on EUV mirror Figure = 0.04 nm rms

MSFR = 0.13 nm rms

HSFR = 0.07 nm rms

Optics Fabrication:

ZEISS CARL ZEISS SMT

Flare is determined by the Mid Spatial Frequency roughness

Due to the small wavelength EUV is extremely sensitive to flare

$$Flare \propto n_{mirrors} \cdot (MSFR/\lambda)^2$$

Definition: All wavelengths of the Power Spectral Density which generate infield scattering contribute to the MSFR

Power spectral density (example)

dose errors

becomes larger

ZEISS CARL ZEISS SMT

Main challenge: flare reduction

proximity effects in dependence of the local reticle transmission

flare reduces overlap of process windows due to dose offsets

Progress in flare reduction

Coating Technology: EUV requires (almost) perfect nanolayers...

Challenges

high peak reflectance and large FWHM	wave-length matching
> 70% shown	< 0.2% shown

Wave-length matching: transmission of a 10-mirror system

EUV Optics: The future

EUV is introduced as a high k1 technology

Node ¥ NA	0.25	0.35	0.5
32 nm	0.59 K1 re	constant k	1.19
22 nm	0.41 reduct	0.57	
16 nm	0.30 Ction	0.41	0.59
11 nm	0.20	0.29	0.41

opportunity

The next step:

- 0.25 NA projection optics with sigma > 0.7 illumination systems (with oblique illumination) enables:
 - 32 nm half pitch production
 - -22 nm half pitch R+D

Image log-slope is key parameter

How much contrast (image slope) do we have?

NILS is proportional to exposure latitude

Dense lines 22 nm with conventional and annular illumination

30 nm and 22 nm dense contacts – conventional illumination

dense contacts with conventional and quasar illumination

And another step: Extendibility of EUV – design concepts

Summary

- key technologies are progressing towards production tool requirements
 - mirror figure
 - flare
 - coating technology (reflectivity, wavelength matching)
- Improved NA = 0.25 systems will address
 - → 32 nm half pitch (production)
 - → 22 nm half pitch (R+D)
- optical designs with NA > 0.3 support 22 nm half pitch production
- with designs for even higher NA's (≥ 0.5) resolutions down to 16 nm and beyond arise at the horizon

Acknowledgment

Thanks to a huge team effort at...

- FOM-Rijnhuizen
- TNO TPD
- PTB-BESSY
- IWS Dresden
- Philips
- Heidenhain
- The teams at ASML and Zeiss
- ...and many others

Part of this work was supported by:

German Federal Ministry of Education and Research projects 13N8088 and 13N8837, MEDEA+ projects "EXTATIC" and "EAGLE", European Commission project "More Moore" (IST-507754-IP).

GEFÖRDERT VOM