Development of EUV mask substrates with low thermal expansion

Yuuki Shiota, Shouji Shimojima, Morio Hosoya, Mitusharu Tsukahara*, Takeyuki Yamada*, Kesahiro Koike* and Tsutomu Shoki*

R&D Center, Blanks Division*
HOYA Corporation

Critical issues of EUV mask substrates

CTE

Requirement : < ± 5ppb/K in production

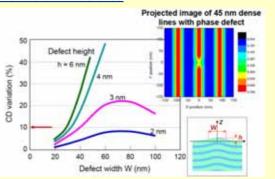
Low Thermal Expansion Material
(LTEM) will be needed
In HOYA, Corning ULE (SiO₂-TiO₂ glass)
is mainly used as EUV mask substrate

Flatness

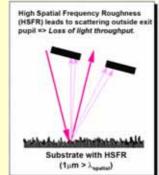
Requirement: < 50 nm P-V on both

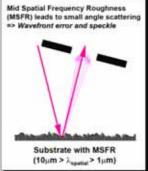
sides (142mm sq.)
Flatness;d

Wafer


Image Placement Error(IPE)

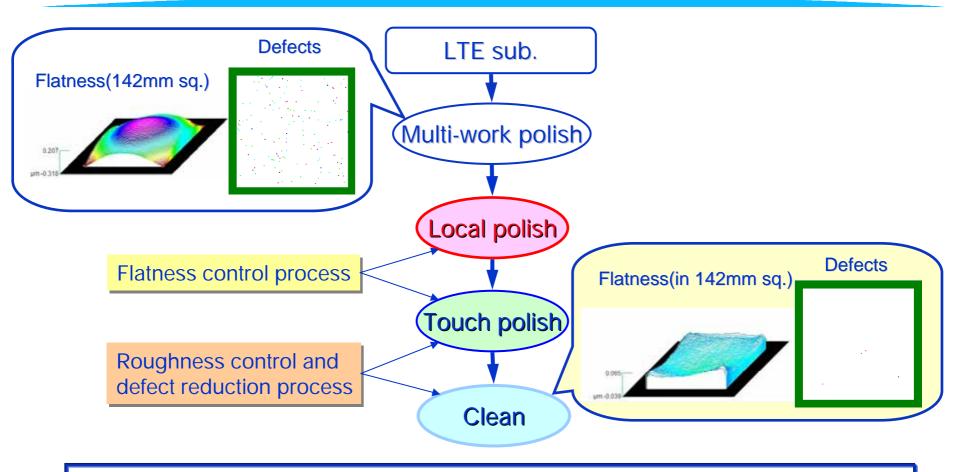
= (d * tan6 °)/4 < 4.8nm (ITRS spec. @2010)


Defects


Killer defects: 70nmW x 2nmH on ML

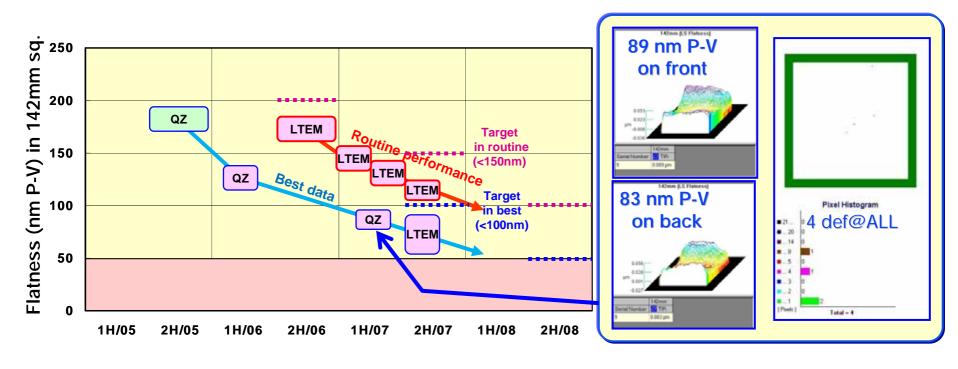
Simulation results T. Terasawa et al. PMJ2004

Roughness(HSFR, MSFR, Local slope, etc.) Affect on EUV light reflectivity and LER



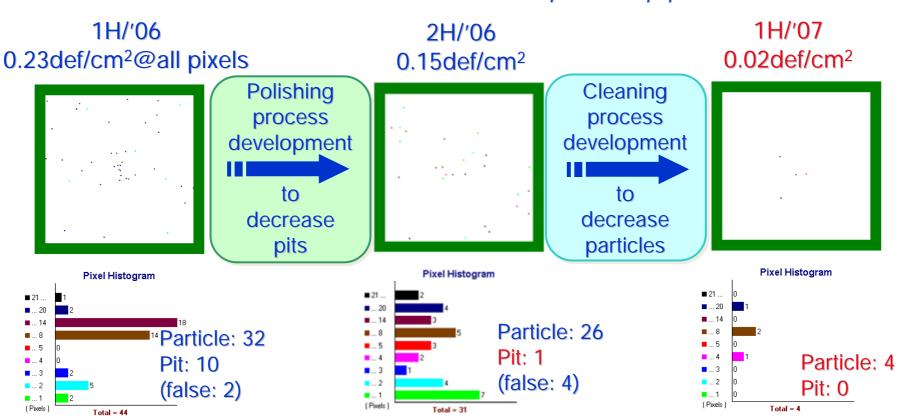
EUV mask substrates specification (SEMI P37)

	Size or area definition	Spec.	units	Current metrology in HOYA	
Coefficient of thermal expansion (CTE)		Class A: ±5 Class B: ±10	ppb/K		
Flatness (Both sides)	142mm sq.	Class A:<30 Class B:<50	nm P-V	Corning-Tropel Ultra Flat	
Roughness Local slope(low)	5μm<λ _{spatial} <1mm	<1.5	mrad (3σ)	Zygo NewView	
Roughness Local slope(high)	250nm<λ _{spatial} <5μm	<1.8	mrad (3σ)	- AFM	
Roughness HSFR	50 nm $<\lambda_{spatial}$ <250 nm	<0.15	nm-rms (1σ)		
Defect (Particle, Pit)	> 50nm PSL equivalent size	0	counts /cm²	Lasertec M1350	


Process flow of EUV mask substrates

Advanced processes including local polish have been developing to attain substrates with higher flatness and lower defects

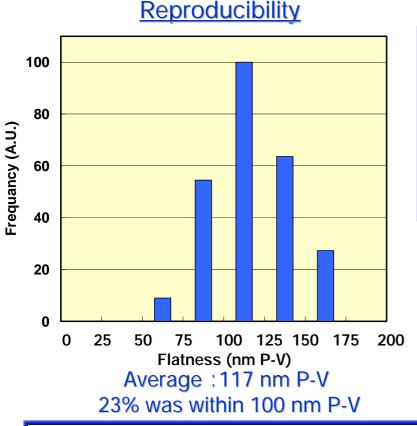
Flatness improvement



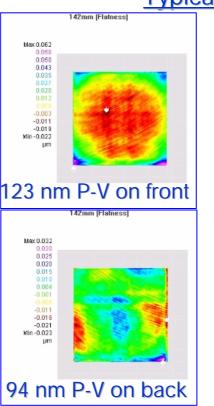
- Substrates with high flatness and low defects can be produced using local polish
- Best flatness of ~80nm and routine flatness of ~120nm were attained in 2007

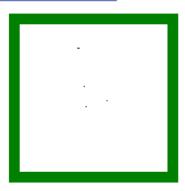
Defect reduction of LTE substrates

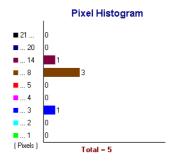
Inspection equipment: Lasertec M1350



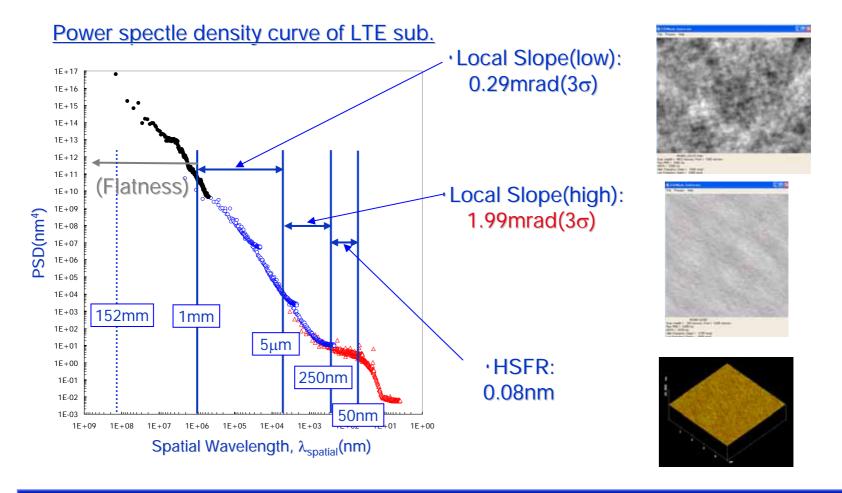
Defects on LTE substrates have been decreased by improvements of polishing and cleaning processes




LTE substrates performance: Flatness and defects


Routine Target in 2007: <150 nm P-V in 142mm sq.

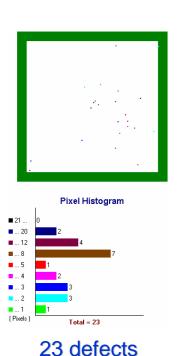
Typical ULE substrate




5 defects@all

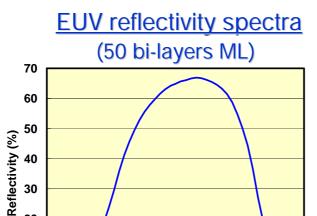
LTE substrates with high flatness of 100 nm and low defects were achieved

LTE substrates performance: Roughness



Performance of ML blanks with LTE sub.

ML blank defects



20

10

13.0

13.2

EUV reflectivity was measured by reflectometer located at Selete

13.4 13.6 13.8 14.0		Blanks	Target	Target
Wavelength (nm)		on LTEM	in 2007	in 2010
	Reflectivity (Peak, %)	66.4	>64	>66
	Defects on ML	0.13	0.40	0.20
	(counts/cm ²)	@70 nm	@70nm	@40nm

ML blanks meeting the target spec. in 2007 can be produced by using improved ULE substrates

Summary

- HOYA has been focusing on development of fabrication process for LTE substrates to attain high flatness, smooth surface and low defects, since 2006
- LTE substrates with high flatness of less than 120 nm and low defects of less than 0.05 def/cm²@60 nm can be produced by improvement of fabrication process
- We are supplying EUV blanks with LTE substrates meeting target specifications for alpha EUV exposure test

• We are now challenging further defect reduction and further flatness improvement of LTE substrates toward production target

