

EUVL Development Status of Canon

Shigeyuki Uzawa, Hiroyoshi Kubo, Toshihiko Tsuji Canon Inc. Core Technology Development Headquarters

31 October, 2007

- 1. Canon's Roadmap of EUVL tool
- 2. Exposure results of SFET
- 3. SFET illuminator enhanced plan
- 4. Preparation for the Full Field Tool
- 5. Requested NA and Resolution of EUVL
- 6. Summary of Canon's EUVL Development Status

- 1. Canon's Roadmap of EUVL tool
- 2. Exposure results of SFET
- 3. SFET illuminator enhanced plan
- 4. Preparation for the Full Field Tool
- 5. Requested NA and Resolution of EUVL
- 6. Summary of Canon's EUVL Development Status

Canon's Roadmap of EUVL tool

1. Canon's Roadmap of EUVL tool

2. Exposure results of SFET

- 3. SFET illuminator enhanced plan
- 4. Preparation for the Full Field Tool
- 5. Requested NA and Resolution of EUVL
- 6. Summary of Canon's EUVL Development Status

Exposure Results of SFET at Canon

Exposure Results of SFET at Selete

Resolution of Dense C/H Patterns

Resolution of L/S patterns (X-slit)

Canon

Pattern shapes of 20-26 nm L/S patterns were improved by using slit Illumination. 24 nm L/S patterns were almost resolved.

Courtesy of Selete

X-slit

- 1. Canon's Roadmap of EUVL tool
- 2. Exposure results of SFET

3. SFET illuminator enhanced plan

- 4. Preparation for the Full Field Tool
- 5. Requested NA and Resolution of EUVL
- 6. Summary of Canon's EUVL Development Status

SFET Illuminator Enhancement Plan

We plan to retrofit an additional unit To enhance illumination uniformity.

< +/-3% across the field

Estimated Illumination Distribution

Canon

SFET Layout with illumination enhancementanon

All units were accomplished and the installation is started.

- 1. Canon's Roadmap of EUVL tool
- 2. Exposure results of SFET
- 3. SFET illuminator enhanced plan
- 4. Preparation for the Full Field Tool
- 5. Requested NA and Resolution of EUVL
- 6. Summary of Canon's EUVL Development Status

Projection Optics for full field tool

For Full-Field System, PO has been designed. EUVL is extendable beyond DRAM ¹/₂ pitch 32nm generation.

Resolution	32nm L/S
NA	>0. 25
Magnification	1/4
Field size	26mm x 33mm
Projection type	6 Aspheric mirrors
Wavefront error	<0.5nm RMS
Flare	<11%
Incident angle	6 deg
Illumination mode	> 5 types
Though Put	> 80 wph
	Source power 115w
	Resist Sensitivity 10mj/cm

EUVL Optics Specifications

Lens Aberration Requirement

- Lens aberration requirements mainly comes from CD variation requirement in the field
- The impacts to the CD control at MPU gate 21 nm generations had been calculated

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
DRAM and Flash									
DRAM 1/2 pitch (nm)	80	70	65	57	50	45	40	35	32
Flash ½ pitch (nm) (un-contacted poly)	76	64	57	51	45	40	36	32	28
Contact in resist (nm)	94	79	70	63	56	50	44	39	35
Contact after etch (nm)	85	72	64	57	51	45	40	36	32
Overlay [A] (3 sigma) (nm)	♦15	◆1 3	♦11	10	9	8	7.1	6.4	5.7
CD control (3 sigma) (nm) [B]	8.8	7.4	6.6	5.9	5.3	4.7	4.2	3.7	3.3
MPU									
MPU/ASIC Metal 1 (M1) 1/2 pitch (nm)	90	78	68	59	52	45	40	36	32
MPU gate in resist (nm)	54	48	42	38	34	30	27	24	21
MPU physical gate length (nm) *	32	28	25	23	20	18	16	14	13
Contact in resist (nm)	111	97	84	73	64	56	50	44	39
Contact after etch (nm)	101	88	77	67	58	51	45	40	36
Gate CD control (3 sigma) (nm) [B] **	•3.3	♦2.9	2.6	2.3	2.1	1.9	1.7	1.5	1.3

Lithography Technology Requirements

ITRS 2006 Update

(anon

DOF and NILS for MPU gate 21 nm

MPU gate (nm)	DOF(nm)	NILS
21	120	1.57

NILS : Normalized Image Log Slope

'anon

In the case, when lens aberration less than 0.75nm RMS, both DOF & NILS are within the requirement.

CD Uniformity and Lens Aberration

CD variations by the lens aberration at MPU gate
21nm generations is less than 0.5nm

Lens Aberration - CD variations in the field

The lens aberration must be less than 0.5nm RMS to satisfy the CD variation at MPU gate 21 nm generations.

Stage units for the HVM are ready

Long term stability test is in operation under High Vacuum Environment.

2006

Accomplished all the test items of the wafer and reticle stage in High Vacuum Environment.

2005

Ion Beam figuring tool is ready for production Canon

The IBF was developed at EUVA supported by NEDO, and was installed at manufacturing site in Canon.

EUV Reflectometer at manufactory site

Mirrors of SFET are measured by this reflectometer.

Wavelength range Monochromaticity (FWHM) Angular distribution Polarizer extinction factor Measurement Repeatability Maximum sample diameter

12.5 - 15 nm

Canon

- 0.06 nm
- 5 mrad
- < 1E-3
- 0.2%
- 0.5 m

Multilayer Coating performance is proved by SFET. Canon

Top Critical Issues in EUVL

2003	2004	2005	2006
1. Source power and lifetime including condenser optics lifetime	1. Availability of defect free mask	1. Resist resolution, sensitivity and LER met simultaneously	1. Reliable high power source and collector
2. Availability of defect free mask	2. Lifetime of source components & collector optics	2. Collector lifetime	2. Resist resolution, sensitivity and LER met simultaneously
3. Reticle protection during storage, handling and use	3. Resist resolution, sensitivity and LER met simultaneously	3. Availability of defect free mask	3. Availability of defect free mask
4. Projection and illuminator optics lifetime	4. Reticle protection during storage, handling and use	4. Source power	4. Reticle protection during storage, handling and use
5. Resist resolution, sensitivity and LER	5. Source power	5. Reticle protection during storage, handling and use	5. Projection optics quality & lifetime
6. Optics quality for 32-nm half-pitch node	6. Projection and illuminator optics lifetime	6. Projection and illuminator optics quality & lifetime	* Timing and cost / business case for EUVL development

Ref: Steering Committees – 2nd, 3rd, 4th, and 5th International EUVL Symposia

HVM EUVL Source is narrowed down to 2-type

Canon

Maker	2002	2003	2004	2005	2006	2008-10
Philips	DPP Xe	DPP Sn		Rotational el DPP Sn	ectrode Ro DP	tational electroc P Sn
Extreme UV	66 W/2πSr	106 w/2πSr	257 w/2πSr	200 w/2πSr	300 w/ 2πS	r
	DPP Xe	DPP Xe	DPP Sn	Rotatio	nal electrode DPP Sn [otational electro PP Sn
	40 w/ 2πSr	120 w/ 2πSr	300 w/ 2πSr	800 w/ 2πSr	??? W/ 2πSr	•
XTREME	LPP Xe		Droplet LPP Xe			
	0.6 W/ 2πSr	2 w/ 2πSr	7 w/ 2πSr	10 w/ 2πSr		
0	DPP Xe	DPP Xe	LPP Li		CO2 Laser LPP Sn	CO2 Laser LPP Sn
Cymer	27 w/ 2πSr	66 w / 2πSr	20 w / 2πSr	84 w / 2πSr	41 w / 2πSi	r
		DPP Xe		DPP Sn	Ro Di	otational electro PP Sn
USHIO		9.7 W / 2πSr	121 w / 2πSr	397 w / 2πS	Gr 645w / 2π	Sr
GIGAPHTON	I -	LPP Xe		LPP Sn		CO2 Laser LPP Sn
/KOMATSU		2.2 w / 2πSr	9.1 w / 2πSr		74 w / 2πs	r

- 1. Rapid progress in the last 2 years.
- 2. There are still issues to be conquered.
- 3. All specification will be clear within next 2 years (rosy prospect).

	Target	А	В	С	D
Resolution nm HP	32	29	28	45	25
Sensitivity mJ/cm2	10	27	12	6	49
LER nm	1.6	4.8	6.5	>10	2.3

From 2007 SPIE	
----------------	--

- 1. Canon's Roadmap of EUVL tool
- 2. Exposure results of SFET
- 3. SFET illuminator enhanced plan
- 4. Preparation for the Full Field Tool

5. Requested NA and Resolution of EUVL

6. Summary of Canon's EUVL Development Status

Requested NA and Resolution

Canon

EUVL will have long lifetime <22nm

Canon

EUVL Development Status

Pre-production tool will be ready in 2010 at best case.

- * Completion time is not yet fixed (will be fixed at 2007E).
- * System design and 6-PO production started.
- * Machining tools are ready.
- * All units for tool will be ready in 2009.

Collaborative research with Selete is on-going.

- * HVM Specification study (ex. PSD vs flare)
- * Chemical contamination on mirror surface
- * Mask handling

Consortium works encourage every developments in the EUV lithography field.

- * Source, resist, mask.
- * CAD tool with flare compensation.

Some Exposure results are quoted from Selete presentations. The IBF was developed by EUVA supported by New Energy Industrial Technology Development Organization (NEDO).

Thank you for your attention!