

The only cost effective extendable lithography option: EUV

Martin van den Brink Executive Vice President Marketing and Technology

Barcelona, October 17, 2006

Content

- Lithography will remain key driver for shrink
- Need for shrink continues
- The only cost effective extendable lithography option: EUV
- EUV partnering and infrastructure
- Conclusion

The impact of lithography in 2006

Litho Tools, Masks, Mask Equipment, Resist Materials and RET SW \$13B

> Litho Exposure Tools \$6.5B

Source: VLSI Research,

Barcelona, October 2006/ Slide 3

The impact of lithography in 2011

Litho Tools, Masks, Mask Equipment, Resist Materials and RET SW \$19B

> Litho Exposure Tools \$11B

Source: VLSI Research,

Barcelona, October 2006/ Slide 4

Content

- Lithography will remain key driver for shrink
- Need for shrink continues
- The only cost effective extendable lithography option: EUV
- EUV infrastructure
- Conclusion

Customers' appetite for shrink continues unabated

Barcelona, October 2006/ Slide 6

Barcelona, October 2006/ Slide 7

Resolution, CD uniformity & overlay drive shrink

Layout 6 transistor SRAM Cell

Design Rule & Cell Area [µm²]

Aggressive

2.00

					NOCE	9
					130 n	m
					90 nr	n
					65 nr	n
					45 nr	n
					32 nr	n
X th	-sectior rough C	ı ell	CD ◆	CDU C overlay & O Spacing	DU verlay CD	
	СН	spacer	Gate	222	СН	

pass transistor

Source: IMEC, TI Barcelona, October 2006/ Slide 8

bitline

m1.001.251.50m0.450.550.80m0.200.270.34m0.100.130.19

cell area 0.24 µm² metal pitch 130nm ArF immersion

Typical

2.50

Relaxed

3.00

Overlay and resolution (-control) key for device scaling

Roadmap scenarios

Resulting k₁ as function of resolution, wavelength and NA

ŀ	half pitch	100	65 2005	45 2007	32 2009	22 2011	16 2013	11 2015
λ [nm]	NA		2000	2001	2000	2011	2010	2010
248	0.80	0.32						
193	0.93		0.31					
	1.20		0.40	0.28				
	1.35			0.31	0.22	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

 k_1 = (half pitch) * NA / wavelength Most aggressive k_1 in production today = 0.3, physical limit single exposure = 0.25 Practical limit double patterning = 0.2

Highest air-based NA system will support 60-65 nm

	half pitch	80	65 2005	45 2007	32 2009	22 2011	16 2013	11 2015
λ [nm]	NA		2005	2007	2005	2011	2013	2015
248	0.80	0.30		Highe	st air based			
193	0.93		0.31	suppo	orts 60-65 ni	m		
	1.20		0.40	0.28				
	1.35			0.31	0.22	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

ASML mask and system enhancements extend lithography to the limit of k₁

DoseMapper for optimum CD Uniformity

Flexible off-axis & polarized illumination

In-built wave-front, polarization and pupil metrology

Mask enhancement techniques & optimization software

	2.4				
		125		25.7	
1					x 1
-					
					5.0
					2.04

Offline Dual stage wafer height mapping Focus Dry, Expose Wet

Illumination source optimization & software

First super high NA immersion system enables 45 nm

ł	alf pitch	100	65	45	32	22	16	11
	year		2005	2007	2009	2011	2013	2015
λ [nm]	NA							
248	0.80	0.32						
193	0.93		0.31					
	1.20		0.40	0.28	First s	uper high N n enables 48	A immersio 5 nm	n
	1.35			0.31	0.22	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

Roadmap scenarios, the impact of immersion

Water-based 193 not sufficient for 32-nm half pitch DPT real option, but costly

ł	alf pitch	100	65	45	32	22	16	11
year		2005	2007	2009	2011	2013	2015	
λ [nm]	NA							
248	0.80	0.32						
193	0.93		0.31		Max NA water-based 193 nm immersion requires double patterning to get to 32			
	1.20		0.40	0.28				
	1.35			0.31	0.22	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

New software & algorithms required to split & optimize OPC and stitching for Double Patterning

Barcelona, October 2006/ Slide 16

Double line patterning; 32-nm half pitch Flash

Target Min Pitch 64nm k1 = 0.20

SPLIT + OPC

MASK A

MASK B

Poly patterning Annular 0.8/0.5, X-Y polarized XT:1700i, 193nm - 1.2NA

Co work ASML, Imec, Synopsys and Mentor Graphics Barcelona, October 2006/ Slide 17

Double trench patterning: overlay induced CD change Δ overlay = 0

32-nm half pitch with 193 immersion extremely challenging

ł	alf pitch vear	100	65 2005	45 2007	32 2009	22 2011	16 2013	11 2015
λ [nm]	NA							
248	0.80	0.32						
193	0.93		0.31		NA 1.55 r	5 requires new liquid, new glass		
	1.20		0.40	0.28	to extent	to 32nm		
	1.35			0.31	0.22	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

Barcelona, October 2006/ Slide 20

EUV the only high volume opportunity

	half pitch	100	65	45	32	22	16	11
	year		2005	2007	2009	2011	2013	2015
_λ [nm]	NA							
248	0.80	0.32						
193	0.93		0.31					
	1.20	EUV rec	quired for 3	2 nm as co	st reduction			
	1.35	technol	ogy than n	on water im	mersion	0.15		
	1.55				0.26	0.18		
13.5	0.25				0.59	0.41		
	0.35					0.57	0.41	
	0.45						0.53	0.37

Arrival at IMEC and Albany Nanotech (Aug.'06)

Albany

EUV development systems are being installed at two customer sites

Likely technology roadmap

ŀ	nalf pitch	100	65	45	32	22	16	11
	year		2005	2007	2009	2011	2013	2015
λ [nm]	NA							
248	0.80	0.32			Pitch r	elavation	or	
193	0.93		0.31		_ Double	e patternir	ng	
	1.20		0.40	0.28	•			
	1.35	Low	k1 -	→ 0.31	0.22	0.15	Fluid	/
	1.55	challe	enge		0.26	0.18		rial
13.5	0.25				0.59	0.41	Chain	lige
	0.35					0.57	0.41	
	0.45		Infras	tructure c	nallenge		0.53	0.37

Barcelona, October 2006/ Slide 23

ASML 300mm Product Roadmap

Content

- Lithography will remain key driver for shrink
- Need for shrink continues
- The only cost effective extendable lithography option: EUV
- EUV partnering and infrastructure
- Conclusion

Full field, through focus 40-nm lines, 55 contacts

Scanning, full field, EUV overlay 7 nm

٨L

Corrected for X/Y shifts

Source power progress has been increasing

Resist shot noise likely not the Line Edge Roughness limitation

LER versus Sensitivity for selection of known EUV resists

Source: Bruno La Fontaine, IEEE workshop 06 Barcelona, October 2006/ Slide 29

Non litho post processing improved LER

Source Pawloski, SPIE microlithogrphy '06

Barcelona, October 2006/ Slide 30

Progress in blank defect density reduction

EUV test mask

Data from:

OP. Seidel (ISMT), 3rd International EUVL Symposium, Miyazaki, Japan (2004).

Press release ISMT (http://www.sematech.org/corporate/news/releases/20041220.htm), December 20, 2004

Presentation Asahi Corp., 4th International EUV Symposium, San Diego, USA (2005).

En selida state Jech 2010 gissid zega defects >43nm on quartz substrate @ ISMT (20-Feb-2006).

100 nm

Zero added particles per reticle exchange required

No clear customer consensus for 32 nm, EUV preferred for 22 nm

Customer Lithography preferences for 32 nm & 22 nm (2 year roadmap)

Litho Technology	32nm node / 2009	22nm node/ 2011
ArFi NA = 1.35	2	0
ArFi NA >1.35	3	2
Double Patterning	3	1
EUV	4	8
Other	2	3
lı e	EUV preferred for Memor mmersion (single or doul xposure) preferred for Lo	ry EUV preferred ble ogic

Poll of 14 customers, ASML 32nm Choices Meeting, San Francisco 24 Jan 06

Historic reduction stepper imaging technology changes

Technology	Incubation time [yr]	Production Insertion	Diffraction limit [nm]	Incremental Improvement %
436 nm/air	-	1980	109	-
365 nm/air	3	1989	91	19
248 nm/air	9	1995	62	47
193 nm/air	7	2002	48	28
157 nm/air	Failed	-	39	23
193 nm/water	3	2006	34	44
193 nm/HI	> 6	>2010	29	15
13 nm/ vacuum	>10	>2010	3.3	1031

Increased litho process complexity drives cost

Cycle time of multiple exposure strategies increases

Higashiki, Toshiba, Santa Clara, SPIE march 06

Content

- Lithography will remain key driver for shrink
- Need for shrink continues
- The only cost effective extendable lithography option: EUV
- EUV partnering and infrastructure
- Conclusion

EUV at Research Institutes

- In August, ASML shipped EUV Alpha Demo Tools to the College of Nanoscale Science and Engineering (CNSE) of the State University of New York (SUNY) at Albany, N.Y., and to IMEC in Leuven, Belgium.
- ASML is integrating these tools on-site to prepare them for full-system qualification enabling EUV development.
- Major semiconductor base will have EUV access at these sites: STMicron, Philips, Qimonda, Infineon, Intel, IBM, Toshiba, Sony, Freescale, AMD, MEI, NEC, Samsung, TSMC.
- EUV infrastructure will be driven through above developments.

Continuous progress of EUV infrastructure through partners

- Carl Zeiss
- Cymer
- Philips Extreme
- Rohm and Haas Electronic Materials
- Toppan Photomasks
- XTREME technologies

EXTREME ULTRAVIOLET LITHOGRAPHY

EXTATIC. 2001-2005.

EUVSources, 2001-2004,

EXTUMASK, 2001-2004,

EXCITE. 2002-2005.

more Moore: 2004-2006,

"push the limits of lithography to enable and exceed the requirements for the 22 nm node"

ASML, SIGMA-C SOFTWARE, PHYSTEX, IMAGINE OPTIC, XTREME TECHNOLOGIES, PHILIPS EXTREME UV, FOCUS, EPPRA, XENOCS, SAGEM DEFENSE SECURITE, AMTC, CARL ZEISS SMT, CARL ZEISS LO, PHILIPS, AZEM, MEDIA LARIO, SCHOTT LITHOTEC, TNO, ENEA, IMEC, CEA, TU Delft, Russian Academy of Science: Inst. of Spectroscopy, IPM, UNIVERSITAET MAINZ, NCSR, CNRS, FhG, UNIVERSITAET BIELEFELD, FOM, ELLETRA, University of Burmingham

EUV achievements More Moore consortium

• Sources

- Introduction of tin as plasma
- Introduction of rotating disc electrodes
- Full size transmission Spectral Purity Filter prototype for suppression of out-of-band EUV radiation
- Optics
 - multi layers improvement resulting in 70 % mirror reflectance
 - Demonstration of reduced flare level (10%)
- Work on molecular resists
- System
 - Air gauge flow sensor feasibility in the leveling concept of a 32 nm EUV tool.
- Metrology
 - CD/overlay metrology prototype, demonstrating 32 nm capability
 - Development of a non destructive Photo Emission Electron Microscope suitable for maskblank defect evaluation

EXTREME ULTRAVIOLET LITHOGRAPHY

EXTATIC. 2001-2005.

EUVSources, 2001-2004,

EXTUMASK, 2001-2004,

EXCITE, 2002-2005,

more Moore: 2004-2006.

EAGLE, 2006-2008,

"develop the technology for an EUV lithographic platform for high volume manufacturing"

ASML, FOM, Carl Zeiss SMT AG, Philips EUV, Xtreme Technologies, Alcatel, Sagem, Media Lario

Barcelona, October 2006/ S

European Project partners

Content

- Lithography will remain key driver for shrink
- Need for shrink continues
- The only cost effective extendable lithography option: EUV
- EUV partnering and infrastructure
- Conclusion

Lithography roadmap

- Water-based immersion will capture the 40-nm half pitch using 1.35-NA 193-nm lithography.
- Non water-based immersion needs new lens materials to increase resolution capability significantly:
 - Without new lens material, new fluid technology full field resolution advantage limited to 6%. Progress not sufficient to give economic return to equipment supplier and its user.
 - New lens material technology availability will push any product implementation beyond 2009.
- EUV technology acceptance is growing but still not ready for production environment.
- Hence double patterning is the only option for production in the 2008-2009 time frame. ASML will support this with sufficient overlay and productivity on their products in time.

The promises of EUV

- Process complexity and cycle time will go up and EUV now becomes a cost and cycle time reduction opportunity. Cost reduction to be achieved by single exposure, single mask and low OPC content.
- EUV mask and process infrastructure will be developed facilitated by the IMEC and Albany program in order to achieve above objective.
- EUV is the main contender for 32 nm and beyond, and the only possible cost effective lithography option with multiple node extendibility.
- ASML has received its first order for EUV pre-production system for delivery in 2009 and is seeking more customers to drive production EUV capability.

