

Current status of EUVL mask blank development in AGC

SUGIYAMA Takashi, MIKAMI Masaki, HAYASHI Kazuyuki, KIKUGAWA Shinya ASAHI GLASS COMPANY R & D Center

Outline

- Introduction
- Brief summary of substrate preparation in AGC
- ML deposition and EUV reflectometry
- Defect analysis and reduction
- Absorber material
- Summary

Basic layer structure of AGC mask blank

Low thermal expansion material, "AZ"

CTE (Coefficient of thermal expansion) spatial variation in diagonal scan of 6025 AZ substrate is within +/-5 ppb/K (please see 05-MA-63 for details).

Surface figuring of substrate

(142 x 142 mm quality area)

Defectivity of Quartz and AZ substrate

Defects on AZ substrate are more difficult to clean than on quartz.

Low Defect Deposition tool for Mo/Si ML

Nexus with the latest features developed at MBDC, SEMATECH

EUV reflectometry (1)

A reflectometer at NewSUBARU of University of Hyogo gives us highly precise reflectance measurement of mask blanks.

EUV reflectometry (2)

Measurement Performance

Wavelength

Precision MADT: < 2 nm

Accuracy (1σ) : < 2 nm

Reflectance

Precision MADT: < 0.5%

Accuracy (1σ) : < 0.1%

AIXUV's high-throughput (3 plates/hr) EUV reflectometer for daily monitor

EUV reflectance

Typical reflectance curve of Mo/Si 50-pair ML (peak reflectance > 65%)

EUV centroid wavelength uniformity

Optimized centroid wavelength uniformity is < 0.03 nm.

EUV peak reflectance uniformity

Optimized peak reflectance uniformity is < 0.6%.

Defect of mask blank

44 defects (> 82 nm, 3 pixel)

Typical result in total ML defect

Current average number of defects is 30 to 50 (> 82 nm). Specification for mass production is 0 to 1 (> 30 nm)!

2nd ML adder

7 defects (> 82 nm, > 3 pixel)

Typical result in 2nd ML adder

Average number of 2nd ML adders is up to 20. Decorated substrate defects are dominant in total defects. (please see 07-MA-99 for details).

2nd ML adder classification

Typical analysis result of 2nd ML

Pixel Count	Core Element	Form	Location
10	Mo / Si multilayer	ML fragment	In 2nd ML
7	Mo / Si multilayer	ML fragment	In 2nd ML
6	Mo / Si multilayer	ML fragment	In 2nd ML
5	Mo / Si multilayer	ML fragment	In 2nd ML
22	Si / O	Si-oxide or Glass	In 2nd ML
21	Si-rich	Si fragment	In 2nd ML
19	Fe / Al / O	?	In 2nd ML
6	С	Carbon	On 1st ML
5	Si-rich or C	Si fragment, Carbon	On 1st ML

Si defects are dominant in 2nd ML

Ta-based material for absorber layer

Ta-based material for AR layer

AR layer of Ta-based B material shows quite low reflectance at 257 nm.

Current and future specifications

Specification item	Current specification	Specification for mass production
CTE	< +/- 5 ppb/K	< +/- 5 ppb/K
Sub. flatness (Front)	< 50 nm	< 50 nm
Sub. roughness	< 0.10 nm	< 0.10 nm
Peak EUV reflectance	> 65%	> 67%
Centroid wavelength uniformity	< 0.03 nm	< 0.03 nm
Peak reflectance uniformity	< 0.6%	< 0.3%
Defect density	< 0.2 / cm ² (> 82 nm)	< 0.005 / cm ² (> 30 nm)

Reduction of defect density is still a big challenge!

Summary

- ☑ AGC's infrastructure comprehends technologies from synthesis of LTEM to deposition of ML and absorber.
- Optical properties of AGC's mask blank are getting closer to the specification for mass production.
- New Ta-based material has good properties for absorber. It's to be patterned and evaluated.
- ☑ Fabrication of defect-free EUVL mask blank is still a big challenge. The methodology in each process is now being built up in AGC.

Acknowledgement

Authors would like to thank

Prof. Kinoshita and Dr. Watanabe, University of Hyogo

SEMATECH

Mask Blank Development Center

Veeco Instruments

AIXUV

