Development of beta EUV blanks at HOYA

T. Yamada, T. Shoki*, S. Shimojima*, Y. Shiota*, M. Tsukahara*, K. Koike, H.Shishido, O. Nozawa*, R. Ohkubo* and M. Hosoya*

Blanks Div., R&D Center*, HOYA Corporation

Outline

- Introduction
 - EUV blanks roadmap
 - HOYA EUV blanks structure
- Blanks pilot line status
 - LTEM polishing
 - Precise EUV reflectivity control
 - Ru cap defects improvement
 - LR-TaBN absorber production
 - Backside film performance
- ML blanks defect reduction update
- Summary

EUV blanks roadmap

CY	2005	2006	2007	2008	2009	2010
DRAM hp	80 nm	70 nm	65 nm	57 nm	50 nm	45nm
α blanks β blanks						
Sputter, Cleaner, XRR etc. Production blanks						
Defect reduction Phase 1 Defect reduction Phase 2						
Flatness improvement						

- **E**α EUV blanks (2002 2005)
 - for MET exposure test and mask process development
- **■**β EUV blanks (2006)
 - ■To achieve higher quality for full field mask
 - **■Blanks pilot line: new infrastructures installation**
- ■Defect reduction (Phase 1): Demonstrated low defects of 0.05 def/cm²@80nm
- ■Defect reduction (Phase 2): Verification of low defects at smaller size
- ■Flatness improvement: Attaining <50 nm PV

HOYA EUV blanks structure

- 1. EUV blanks consisting of CrN buffer and LR-TaBN absorber
- 2. EUV blanks consisting of Ru capping layer and LR-TaBN absorber

β-EUV blanks pilot line flow --- Approaches in 2006 ---

LTE substrate performance status

Flatness performance on typical LTE substrate

LTE substrates with low defects and flatness of <200nm achieved

To be presented by Shimojima at poster session (14-MA-159)

Total = 20

EUV reflectivity simulated by XRR

Centroid wavelength (CW): λ±0.05nm

Periodic length of Mo/Si (PL): ±0.025nm

- Severe to control < ±0.05nm by deposition only
- Needs feedback of deposition time every batches

CW estimated using PL by simulator

CW measured by EUV reflectometer

- Good agreement between actual data and simulation data
- Possible to manage centroid wavelength on ML using XRR

Centroid wavelength (CW) reproducibility controlled by XRR w/o EUV reflectometer

Possible to control CW within +/-0.05nm using XRR w/o reflectometer

Ru capping layer performance and issue

Comparison of capping layer performance based on experimental and simulated results

Adder defects	
caused by Ru coating	@M1350

	Ru	Si	CrN
EUV Reflectivity	③	③	(3)
Cleaning durability	(3)	(3)	(C)
Absorber etching durability	:	8	(i)
EB repair durability	<u></u>	8	(i)

- Ru capping layer
 - Good material in mask making process w/ EB repair as capping layer
 - Bad defectivity due to Ru coating

Performance on improved Ru capped ML

HOYA developed new Ru compound (Ru_A) capping layer

Total defect performance@M1350

Comparison of Ru-ML and Ru_A-ML

	Ru-ML	Ru_A-ML
EUV peak reflectivity (40 pairs)	63%	63%
Cleaning durability	No damage*	No damage*
Absorber etching selectivity	High selectivity >50	High selectivity >50

*No significant EUV reflectivity change

- Ru_A capped ML blank
 - Adders of 4 defects demonstrated
 - Total defects of 49 at all pixel and 15 defects (0.09 def/cm²) at 80nm showed
 - Quite same properties to Ru capped ML except for defect quality showed

Thickness uniformity and optical reflectivity on LR-TaBN absorber

Thickness uniformity*

^{*} measured by stylus method

Optical reflectivity

Average	8.3%
Max.	8.6%
Min.	8.1%
Range	0.5%
3 sigma	04%

LR-TaBN with uniform thickness and low optical reflectivity achieved

Stress and defect performance on LR-TaBN/CrN stacks

LR-TaBN/CrN stacks with low stress and low defects demonstrated

Low defects backside film

Stress performance

Flatness change: 18 nm

Defect performance

	~0.2	~0.3	~0.5	~1.0	~2.0	2.0~
∆ Particle	0	0	0	0	0	0
∇ Pinhole	0	0	0	0	0	0
□ Dark	0	0	0	.0	0	0
♦ Bright	0	0	0	0	0	. 0
O Other	0	0	0	0	0	0
Total	0	0	0	0	0	0

Zero defects @150nm (M1320)

	Current performance	Target
Sheet resistance	<100 ohm/sq.	<100 ohm/sq.
Stress	<200 MPa	
Defects	Zero@>1um	Zero@>1um

Low stress and low defects film can be coated as backside film

β-EUV blanks specifications

	α blanks	β blanks	β blanks
CY	2005	2006	2007
Substrate material	QZ	QZ/LTEM	LTEM
Substrate flatness	<400 nm	<200 nm	<100 nm
Substrate flatfiess		[<100nm*]	[<50nm*]
Peak reflectivity (R)	>63%	>64%	- GE9/
@EUV	(40 bi-layers)	(40 bi-layers)	>65%
R uniformity	<1% PV	<0.5% PV	<0.5% PV
λ uniformity	<0.10 nm PV	<0.06 nm PV	<0.06 nm PV
MI defect density	<0.1 def/cm ²	<0.2 def/cm ²	<0.2 def/cm ²
ML defect density	@150nm	@80nm	@AII
Absorber defects	N/A	<0.1 def/cm ²	<0.2 def/cm ²
(Adders)	IN/A	@150nm	@80nm
Absorber thickness uniformity	N/A	<+/-1%	<+/-1%
Defect inspection	M1320/M1350	M1350	M1350

*N/A for defect quality

Defect reduction update

Focusing on defect reduction at smaller defects

- M7360 inspection tool (made by Lasertec) has higher sensitivity on ML film
- There are many small defects on current ML blanks

ML blanks defects analysis

- There are still various types of defects on ML blank
- Polishing, cleaning and ML coating processes should be further improved

Summary and Future work

- HOYA started development and production of β EUV blanks in April 2006
 - Blanks pilot line including absorber coating was built in our factory
 - EUV blanks with LTE substrates are ready for full field mask used in alpha EUV exposure tool
- We are focusing on defect reduction at smaller than 80nm from 2006
 - Defect quality is steadily reducing, but there are still many types of defects on the ML blanks

- We will continue defect reduction on ML blanks to verify nearly zero defects under inspection with higher sensitivity
- We will develop polishing process to attain higher flatness and lower defects on LTE substrates, simultaneously.

