# Canon's Development Status of EUVL Technologies

Shigeyuki Uzawa October 16, 2006



#### **Outline**



- 1. Technology Development Update
- 2. Optics and Infrastructure Development
- 3. SFET Development and Results
- 4. Summary and Acknowledgement

# **Tool and Technology Roadmap**





# **Projection Optics Preparation**



For Full-Field System, PO has been designed. 2 samples in many candidates are indicated here.

#### NA0.25 6-mirror system



$$NA = 0.25$$
  
Ring field width = 2 [mm]  
Etendue (PO) = 10 [mm<sup>2</sup>sr]





$$NA = 0.4$$
  
Ring field width = 2 [mm]  
Etendue (PO) = 27 [mm<sup>2</sup>sr]

Etendue (PO) = w x h x 
$$2\pi(1-\cos(a\sin NA))$$
  
w= 2mm, h= 26mm

## **Infrastructure Preparation**





**Mirror polishing tool** 



Wavefront measurement tool for EUV projection optics

#### Key technologies are proven through SFET production .

- Mirror surface Figuring
  Special tool(IBF) developed for mirror surface creation by EUVA project.
- Wavefront measurement:

  Newly developed tool has a measurement accuracy better than 100pm.
- Multi-layer coating (Sputtering Tool):
   Exposure test was accomplished in SFET construction.

# **Ion Beam Figuring Performance**



Target and actual removal profiles in IBF operations of the mirror 1 in SFET



Target & actual figure profiles agreed well. IBF will be highly capable in producing full field exposure tool.



EUVL symposium2006 01-OP-51 M.Ando et al.





**Supported by NEDO** 

(co-operation with Tokyo Univ. of Science)

# **Infrastructure Preparation**





Mirror reflection / phase shift Measurement tool



**EUV light source evaluation Tool** 

. Key technologies are proven through SFET production .

■ Multi layer performance evaluation: Mirror reflectivity and phase shift information to be measured simultaneously.



EUVL symposium2006 04-ME-56 F.Masaki et al.

- Wavefront measurement:

  Measurement to be done with SOR light by EUVA project

  (co-operation with University of Hyougo)
- EUVL symposium2006 Metrology session K.Murakami et al.
- Light source evaluation:

  Evaluation method for EUV light source performance developed.

## **Prototype Stages for Full Field Tool**





Accomplished all the test items of the wafer and reticle stage in High Vacuum Environment.

2005

Long term stability test is in operation under High Vacuum Environment.

2006



# Mask Handling and Contamination Study



#### Mask Carrier Proposal

- **Dual Pod Concept**
- Frame transfer
- Clean Filter Pod





#### Mask Cleaning Study

Study of a short pulsed laser cleaning system

> Microscope image on Ru capped ML/mirror





EUVL symposium2006 04-ME-56 M.Yonekawa et al.

#### Chemical Contamination Study

High acceleration test for mirror contamination, and

In situ XANES Analysis for projection optics.



EUVL symposium2006 01-CC-11 Y.Kakutani et al.

EUVL symposium2006 02-CC-13 M.Niibe et al.



## **SFET Abstract Model**





# **Overview of SFET**







**Supported by NEDO** 

# **Optics Specifications**



# Resolution 32nm L/S

**NA** 0.3

Magnification 1/5

# Field size 0.2mm X 0.6mm

Projection type Aspheric two mirror system

Wavefront error < 0.9nm rms</p>

**# Flare** < 7%

# Illumination type Koehler type

Reticle incident angle6 deg

# Illumination mode maxσ 0.7





**Supported by NEDO** 

## **LPP EUV Source**



Intensity Distribution at IF







**≣UV**∧

**Supported by NEDO** 

LPP: Laser-Produced Plasma

**IF: Intermediate Focus** 

#### **Wavefront aberration and Flare**





| Wavefront | Residual      | Total |
|-----------|---------------|-------|
| AZ5-37    | (1/CA - 1/mm) |       |
| 0.51      | 0.49          | 0.71  |

(nm RMS)



|                     | LSFR  | MSFR  |
|---------------------|-------|-------|
| Measurement (nmRMS) | 0.265 | 0.391 |
| Flare (%)           | 6.08  | 6.64  |





Frequency (1/mm)

Selete Supported by NEDO

# Contrast Simulations Based on Wavefront Canon





45nm L/S(5bar),  $\sigma$ 0.7/0.3



32nm L/S(5bar), σ0.7/0.3



32nm L/S(5bar), 0.55/0.36

# **Exposure Result**



Exposure test has been started at the end of September 2006, Initiated by SELETE, on Canon site.

MET-2D resist Rohm-Haas



98-1 m

Exposure conditions illumination  $\sigma 0.7/0.3$ 

90nm







TOK resist



**Supported by NEDO** 

# 45nm L&S Exposure Result

















**Supported by NEDO** 

Exposure conditions; MET-2D, Rohm&Haas illumination σ0.7/0.3

# 45nm L&S Exposure Result







**Supported by NEDO** 

Exposure conditions; TOK resist illumination σ0.7/0.3

# 32nm L&S Exposure Result













Supported by NEDO

Exposure conditions; TOK resist illumination  $\sigma 0.7/0.3$ 

## **Summary & Acknowledge**



- 1. Canon will develop the Full Field Tool. The schedule will be fixed in middle of 2007.
- 2. Some of key technologies in infrastructures were proven through SFET production .
- 3. For full field Tool, key units will be ready before 2009.
- 4. SFET will be applied for EUV resist evaluation and development in Selete.

Thanks for support and co-operation to;
EUVA, Selete, Aset, NEDO, NTT atsugi Lab.
Univ.of Hyogo, Tokyo Univ.of Science and
Lawrence Livermore National Laboratory

