# Comparison of actinic and non-actinic inspection of programmed defect masks







**Kenneth Goldberg, Anton Barty** 







Hakseung Han\*, Stefan Wurm\*, Patrick Kearney, Phil Seidel



**Obert Wood\***, Bruno LaFontaine



**Ted Liang** 



**Christian Holfeld** 



**Rainer Fettig** 







Yoshihiro Tezuka, Tsuneo Terasawa



additional support

\*current and former project managers

# Fundamental questions remain for EUV reticles

#### **Isolated Defects**

- Can we detect all printable defects?
- Are there "actinic-only" defects?

## **Pattern/Proximity Defects**

 Can we use aerial image data to improve modeling?

## Inspection tools

- How well do they perform?
- Does inspection cause damage?



cross-comparison is the path to greater knowledge







# Different wavelengths see different ML structures

- EUV light penetrates deeply into the resonant ML structure
- 488-nm and 266-nm light barely reaches below the surface

#### Field Penetration for three $\lambda$ s

| λ       | "1%"<br>depth | bi-layers |
|---------|---------------|-----------|
| 13.4 nm | 215 nm        | 31        |
| 488 nm  | 53.6 nm       | 8         |
| 266 nm  | 20.6 nm       | 3         |

At-wavelength testing probes the actual multilayer response.







# The SEMATECH Berkeley Actinic Mask Inspection Tool

Worldwide, this is the only EUV mask inspection tool offering imaging and scanning in dark-field and bright-field modes.



**Scanning** reveals open-field defects, measures subtle mirror reflectivity changes not seen without EUV light.



**Imaging** uses a zoneplate lens to measure the aerial image directly, testing defect printability models without printing.







## SEMATECH Actinic Mask Inspection tool is fully operational

## Scanning & Imaging in routine daily operation

# **Scanning**

#### Bright-field Reflectivity testing

- $\rightarrow$  ≥1 µm spot
- $\rightarrow$  R measurements to ±0.1%

#### Dark-field Scattering

→ Finds printable defects not seen by non-actinic tools.

#### Region-of-Interest identification

→ Used to locate regions of interest for imaging.

We find actinic-only defects, in dark-field and bright-field.

## <u>Imaging</u>

#### **Exposure Time**

- → **0.3–1.5 s** alignment & navigation
- → **20–35 s** for highest resolution

#### Resolution

→ ~100 nm, Mask~25 nm, 4× Wafer equivalent

#### Magnification

→ ~700x, direct to EUV CCD

NA = 0.0625 (0.25 NA, 4x stepper)

Higher resolutions and custom pupil shapes are possible.







# Early tests resolved elbow images down to 100-nm (mask), 25-nm (4x wafer equivalent)

- System Resolution is currently designed to match a 4×, 0.25-NA stepper.
- Illumination: 6° incidence. Partial coherence:  $\sigma_X > 1.0$ ,  $\sigma_V = 0.7$



half-pitch: 250 nm 62.5 nm



150 nm 37.5 nm



**100 nm** (mask) **25 nm** (4x wafer equiv.)

- Imaging is performed with **EUV light**, **directly**
- There is **no scintillator**, **no conversion** to visible light, and **no microscope** objective.
- Consequently the measurements are linear.







# patterns defect

# We have evaluated programmed defects and defect-repair sites on member company masks

In imaging mode, we have studied programmed-defects and programmed-defect repair sites on an AMTC MET mask.

#### Measurements conducted include:

#### 300-nm half pitch (75-nm 4x wafer equiv.)

- dark defects, size variation
- bright defects, size variation
- specific defects through focus

#### 150-nm half pitch (37.5-nm 4x wafer equiv.)

- dark defects, size variation
- bright defects, size variation

#### 450-nm half pitch (112.5-nm 4x wafer equiv)

many specific repair cases



1x1 mm









# Measuring the aerial image: size series, through focus, and repair sites



half-pitch: 450 nm (mask) 112.5 nm (wafer)

were collected in **30-40** minutes.







2 µm

# **Comparing Printing, Simulation**

Programmed bright absorber defects.

300 nm half-pitch (mask) 50-nm (5x wafer equiv.)



MET exposures showed:

Defect printability was *limited by resist resolution* 

**Christian Holfeld**, Bubke, Lehmann, LaFontaine, Pawloski, Schwarzl, Kamm, Graf, and Erdmann *SPIE* **6151**, **61510U** (2006)







# Comparing Printing, Simulation, and Actinic Imaging

Programmed bright absorber defects.

300 nm half-pitch (mask) 50-nm (5x wafer equiv.)









## Comparing Printing, Simulation, and Actinic Imaging











# Actinic scanning-mode: a 1-µm reflectometer

Our **focused beam** probes the **surface reflectivity** and **scattering** *micron-by-micron*.

ALS Beamline 6.3.2 **Reflectometer** (absolute R)  $\geq 10 \times 300 \, \mu m$ Berkeley Actinic Mask Inspection scanning **Focal Spot** (relative R)  $5 \times 5 \, \mu m$   $3 \times 3 \, \mu m$   $1 \times 1 \, \mu m$ 

#### In 2006 we studied:

- The sensitivity of actinic & non-actinic inspection tools vs. printing
- The EUV response of open-field defect-repair sites
- Damage caused by mask inspection







## Using a buried substrate-bump mask, we compared the sensitivity of 4 inspection tools

Many defects are seen only with EUV inspection

#### **MIRAI (EUV)**

- high DF solid-angle
- normal incidence illum.
- low-res DF images

### **Berkeley (EUV)**

- BF & DF scanning
- 6° illumination

#### Lasertec tools

- **M1350** ( $\lambda$  = 488 nm)
- M7360 ( $\lambda = 266 \text{ nm}$ )

Significant improvement from M1350 to M7360



Goldberg, et al., JVST B 2006



### Bright-field scan reveals details not observable in dark-field

**EUV Bright-field inspection** clearly reveals absorptive native defects added after the first MIRAI measurement (in Japan).

- These <u>surface defects</u> do not scatter well.
- In some cases the large surface defects were not seen with dark-field detection.

## Scanning versus Imaging:

- SEMATECH Berkeley tool uses BF/DF scanning: no collection optics, only detectors.
- In an imaging tool with bright-field detection, flare would severely limit resolution, but would have little impact on dark-field.

# Berkeley dark-field



#### **Berkeley** bright-field





## **Cross-comparison measurements of buried-pit defects**

• Pits are milled in a first ML coating using FIB.

Barty, SPIE Photomask 2006

A second ML coating buries the pits.



Again, in bright-field, actinic inspection finds **native defects** and features possibly related to damage produced during **non-actinic inspection**.









## Cross-comparison measurements of buried-pit defects

• Pits are milled in a first ML coating using FIB.

Barty, SPIE Photomask 2006

A second ML coating buries the pits.



Again, in bright-field, actinic inspection finds **native defects** and features possibly related to damage produced during **non-actinic inspection**.

Unexplained vertical line features. Other edge features surround the central fiducial region.





# Comparing: Actinic $\leftrightarrow$ Non-Actinic $\leftrightarrow$ MET printing

We found that each pit type has a different characteristic . . .

- MET printability
   M1350 detectability
- Actinic BF and DF detection strength

Lasertec M1350 before the 2nd coating



... after 2nd coating











# **Actinic inspection found all MET-printable defects**



Arrays of buried substrate pits

## **Early results**

We detected many defects that were below the MET printing threshold

These strong defects did not print

\*BF measured with a 2.5 µm beam spot









# The correlation between actinic dark-field and M1350 showed some inconsistencies

Arrays of buried substrate pits



The M1350 detected many defects that were below the MET-printing threshold.

Yet, the M1350 missed these **printable defects** 

We need more data like this, and also cross-correlation with the M7360.







# Actinic inspection of mask-blank defect-repair sites shows significantly different bright-field and dark-field responses

Actinic **bright-field** and **dark-field scanning** shows the effectiveness of mask-blank defect repair strategies.

- Some sites scatter strongly, others absorb light. EUV tools relying on dark-field only will likely fail to observe some sites with incomplete repair. Non-actinic tools may mischaracterize repair.
- No other existing tool can resolve reflectivity changes on this length scale.









### We measured reflectivity losses caused by inspection damage

### High power inspection can damage masks

- A mask was prepared to assess the damage threshold of the Lasertec M7360, during qualification.
- Actinic bright-field scanning observed narrow damage regions (reflectivity loss up to -6%) outside of the die area, at high power.
  - Some of the regions are *undetectable* in the Lasertec tool itself.

**Actinic BF scans** of Lasertec inspection regions intentionally damaged with different operating modes and power levels.

calibration damage

5 @ full power  $\Delta R_{\text{max}} = -5.4\%$ 



20 @ full power  $\Delta R_{\text{max}} = -2.1\%$ 



1 @ lower power  $\Delta R_{\text{max}} = -0.8\%$ 



20 @ full power  $\Delta R_{\text{max}} = -3.5\%$ 





scanning

region

edge, out of die area

mm



## We used actinic inspection to help set safe power levels

#### **Areas of concern:**

- Damaged areas may be too small for conventional reflectometry to see.
- Damage could be problematic if it can only be seen with EUV light. However, we can use actinic inspection to help set safe power levels.
- The SEMI P38 standard ( $|\Delta R_{max}|$  < 0.5%) is poorly defined regarding the spatial scale of R variations—abrupt R changes may cause problems.

an intentionally damaged defect review test region



power level & dose: 20 @ full power

 $\Delta R_{\text{max}} = -2.1\%$ peak reflectivity drop:





# Actinic Mask Inspection Tool: routine daily operation

A unique tool, aiding the development of EUV reticles

## Scanning: Probes reflectivity & scattering µm-by-µm

- Relative R ±0.1% at 1–5 μm spatial resolution
- Actinic vs. non-actinic cross-comparisons

## **Imaging:** Emulates stepper optics

- 100–200 **high-resolution images** per shift
- In September/October: Five masks in five weeks
- Quantitative analysis & comparison with MET imaging is in progress (programmed absorber and phase defects)
- Studying defect-repair site aerial images
- Upgrades
  - multiple lenses with emulated NA > 0.25
  - arbitrary pupil shapes
     better through
  - illumination uniformity
- better through-focus control
  - distortion control / correction

Thank you























## **Results and conclusions**

# EUV inspection probes *resonant* multilayer properties:

penetrates 4× deeper than 488-nm, 10× deeper than 266-nm

#### **BF and DF**

Both EUV bright-field (BF) and dark-field (DF) are important

- DF alone does not detect all absorbing surface defects
- BF defect sensitivity relies on high flux and a small beam

#### Pit Defect Cross-Comparison

We detected all MET-printable pit defects, and many below threshold

- More data is required (M7360, AFM, modeling, etc.)

#### **Defect Repair Feedback**

Actinic inspection provides feedback for defect repair strategies

– mask-blank defects and pattern defects

#### **Inspection Damage**

Inspection tools can lower EUV reflectivity on short length scales

- Some damage may only be seen at-wavelength
- EUV inspection can help set power levels below damage threshold





















