

Development of Novel Resist Polymers for EUV Lithography

- Improvement of sensitivity by introducing fluorine atoms -

16 October, 2006 2006 International EUVL Symposium

Takashi SASAKI, Osamu YOKOKOJI

ASAHI GLASS CO., LTD. Research Center

Demands for EUV resist

	ITRS 2005	
Sensitivity	5-15 mJ/cm2	
Resolution	32 nm 1:1 L/S	
LWR	1.7 nm	

We focus on the resist sensitivity improvement in this study.

PANY			
	Polymeric	Molecular glass	
	OH OO	RO OR O	
Sensitivity	Easy to control	Depends on Structure	
Thermal property	Good heat stability	Thermal decay Heat softening	
LER	Mw.&size distributions	Small size No distributions	

We focus on the Polymeric resist in this study

Can high efficiency of Secondary electron formation contribute to the resist sensitivity?

Halogenation ,especially Fluorination, is a good potentials to increase an absorption cross section against X-ray.

Can Halogenation enhance the secondary electron yield from polymers?

Evaluation Conditions

➤ Sample Polymers

➤ Sensitivity on EUV exposure

Samples: Polymers with 10wt% TPS –Nf on Si

• Exposure: EUVES-7000 (Litho tech Japan)

• PB: 100°C 90sec, PEB: 100°C 90sec

Development: NMD-3 60sec

➤ Etching test

Samples: Polymers on Si (200 nm)

• Etcher: RIE-10NR (SAMCO Inc.)

• $CF_4/O_2 = 80/20 \text{ vol}\% 2Pa 70\text{mW } 60\text{sec}$

Fig. Sensitivity curves on EUV exposure

•Styrene polymers with HFA units showed high sensitivity relative to ESCAP type polymers

Etching durability

Fig. Etching rate relative to PHS

	PHS	ESCAP type Polymer	Styrene polymer low F contents	Styrene polymer high F contents
Ohnisi parameter	2.4	2.7	2.8	2.8
F contents wt%	0	0	23	40

•Styrene polymers with proper F contents showed almost same etching durability relative to ESCAP type polymers.

AGC

Summary & Future Plan

Summary

- We have been investigating fluorinated resist polymers for EUV lithography.
- Styrene polymers with HFA Unit show a high sensitivity relative to ESCAP type polymers.
- This result indicate that the resist sensitivity can be enhanced by introducing Fluorinated unit.
- Styrene polymers with proper F contents showed almost same etching durability relative to ESCAP type polymers.

Future Plan

• Other fluorinated polymers will be evaluated about sensitivity.

Confirmation of our concept