Debris mitigation and cleaning for Sn-fueled EUV source

Takahiro Shirai, Hironobu Yabuta, Yuki Joshima, Shinsuke Mori, Yusuke Teramoto, Takuma Yokoyama, Zenzo Narihiro, Daiki Yamatani, Kazunori Bessho, Hiroshi Mizokoshi, Gohta Niimi*, Tomonao Hosokai*, Kohkan C. Paul, Tetsu Takemura, Toshio Yokota, Kiyoyuki Kabuki, Koji Miyauchi, Kazuaki Hotta, and Hiroto Sato

Extreme Ultraviolet Lithography System Development Association (EUVA) Hiratsuka Research and Development Center / Gotenba Branch 1-90 Komakado, Gotenba, Shizuoka 412-0038, Japan Phone: +81-(0)550-87-3000, Fax: +81-(0)550-87-3200 *Ushio Inc.

DPP source performance roadmap

Metrics	1Q-2005	3Q-2006	1Q-2008 EUVA final	2009 for HVM
Fuel gas	Хе	Sn	TBD	TBD
EUV power at IF	19 W *1	55~62 W *2	>50 W	>115 W
Etendue limit	10 mm²sr	3.3 mm²sr	< 3.3 mm ² sr	< 3.3 mm²sr
Pulse repetition rate	7 kHz	8 kHz	7-10 kHz	7-10 kHz
Energy dose stability (over 50 pulses, 1 σ)	1.3% (free running)	2.4% (free running)	< 0.5 %	0.1%
Mirror lifetime (10% degradation)	> 1x10 ⁷ pulses	> 3x10 ⁷ pulses	> 0.5x10 ⁶ sec	CoO dependent
This study is explaining DMT, mirror lifetime, and cleaning system				

notes)

*1 : Nested-shell type collector optics, assuming 80% of debris shield transmission and 90% of gas transmission.

*2 : Nested-shell type collector optics with foil-trap assembly, assuming 90% of gas transmission.

Mirror lifetime measurement chamber

Mirror lifetime measurement chamber and pulse-power supply

Depth profile of Sn contamination (SIMS)

Depth profile of Sn contamination was measured by Second Ion Measurement system (SIMS). The experimental setup used SnH_4 -based EUV source, operated at 1 kHz of repetition rate without DMT (foil tap and gas curtain). The number of pulses were 0.25 Mshots. Sn thickness was 254nm@QCM (close to mirror). The mixing layer of Sn and Ru was occurred.

15-18Oct.2006

Debris mitigation tool (Foil trap)

--Foil trap— EUV incident angle: ±45 deg. Thickness of foil: 0.1 mm Without cooling (Next DMT with cooling system)

> This foil was exposed to about 5 Mshots of pulse. Sn contamination was 30 mm from the side of EUV source.

> > Sn contamination

2006 International EUVL symposium

Mirror $\leftarrow \rightarrow$ EUV source

Debris mitigation system

Sn contamination rate

Sn contamination rate was 1.0 x 10⁻⁶ nm/pulse with the foil trap. Sn contamination rate was 3.2 x 10⁻⁸ nm/pulse with the foil trap and gas flow control. The experimental condition was 1 kHz of pulse repetition rate, 10 sec/set, polished QCM-crystal with Ru layer.

15-180ct.2006

Hydrogen radical cleaning system

Sn thickness and cleaning rate were measured by QCM and normalized reflectance. Hydrogen radical density was more than 10¹⁶ cm³.

Dependence of EUV reflectance by Hydrogen radical cleaning

Debris of Sn contaminated the Sn-fueled discharge. Sample mirrors were different substrate and layer material. Reflectivity of the type No. 1 sample was improved by the cleaning.

Dependence of cleaning rate by Halogen gas

Halogen gas supply (arb. units)

Cleaning rates of sample mirrors were sufficiently high. Possibly, the cleaning processing was enabled in a short time. The cleaning rate was calculated using cleaning time and layer thickness, before/after cleaning. The Sn thickness was measured by QCM or SEM.

Repetition of Sn contamination and cleaning

5 times of Sn contamination and Halogen cleaning were continued. Sn contamination was about 1 nm/time. Cleaning rate was 99%/time on average. After 5 cleaning, Sn thickness was 0.20 nm by QCM. The average (5 times) of Sn thickness after cleaning was 0.26 nm. The QCM was polished about 1.0 nm@Ra and was Ru layer. This QCM looked like a sample mirror.

Summary

Latest achievement of mirror lifetime, Debris mitigation, mirror cleaning

Acknowledgments

This work has been supported by *New Energy and Industrial Technology Development Organization (NEDO).*

Part of this work (*Halogen cleaning*) has been conducted by *Air Liquide Laboratories, Japan Kohei Tarutani Hideyuki Sato Cheng-Fang HSIAO*

