

Shot Noise, LER and Quantum Efficiency of EUV Photoresists

Robert L. Brainard,^a Peter Trefonas,^a Jeroen H. Lammers,^b Charlotte A. Cutler,^a Joseph F. Mackevich,^a Alexander Trefonas and Stewart A. Robertson^a

- Introduction
- EUV and DUV Base Titration Experiments
- Poisson Statistics of LER vs. E_{size}
- LER Simulation Model
- Quantum Efficiency
- New Resist Systems
- Conclusions

Partial Support by DARPA and EUV-LLC

a. Rohm and Haas Microelectronics

b. Philips Research

I. Introduction

The 45 nm Node will require EUV Resists with Low LER and E_{size} :

LER = 2 nm

$$E_{\text{size}} = 2-15 \text{ mJ/cm}^2$$

Shot Noise Limit¹ =

Limit imposed by statistical probability of underexposing a pixel

Shot Noise Limits

In 1998, John Hutchinson² compared **Shot Noise Limits** of 193 nm and EUV resists using a theoretical model of LER.

	193 nm	13 nm (EUV)
Shot Noise Limit (10 mJ/cm ²):	1 nm	8 nm LER
(1 mJ/cm ²):	5 nm	25 nm LER

Without considering secondary electrons or acid diffusion effects.

More recently,³ several excellent papers considered role of shot noise in limiting the ability to print contact hole arrays.

⁽²⁾ Hutchinson, SPIE 1998

Shot Noise Limits

In 2002, Dentinger et. al.⁴ compared the LER of 25 resist formulations using DUV and EUV exposures. Ratio of LER_{EUV} vs. LER_{DUV} showed no statistically significant increase in EUV LER as photospeed is increased.

Authors' Reasoning:

Since DUV has 12X more absorbed photons than EUV and the LER ratios do not change with Dose:

Shot noise does not effect LER down to 3 mJ/cm²

Absorbed Photons = E_{size} x Abs x Photons/mJ

Materials

Experimental Resists based on EUV-2D

Polymer

$$R_1$$
 R_2 R_3 OH

Inhibiting
Onium PAG Ar_nE⁺ X⁻

Non-Nucleophilic Base [Base]/[PAG] = 0 to 75%

Ethyl Lactate Solvent

II. Base Titration Allowed Us to Study:

Relationship between LER and E_{size} for Both EUV and DUV

Statistical Analysis of LER vs. E_{size}

Poisson Statistics

Acid - Base Simulation Program

Written for this Paper

Quantum Efficiency

C-Parameter (Szmanda Method)

OD (2004 SPIE Paper)

Other Resist Systems

III. Poisson Statistics of

LER vs. E_{size}

Poisson Statistics Apply to Absorption of Incident Photons:

$$\sigma_{_N} = \sqrt{N}$$

 $N = \text{number of absorbed photons per volume element} \propto \text{dose}$.

Side wall roughness ∝ relative variation

$$LER \propto \frac{\sigma_N}{N} = \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{dose}}$$

Base titration curves show the statistics of shot noise.

Why do both EUV and DUV show the same linear behavior?

IV. LER Simulation Model

Schematic of Model

Output of Model

Aerial I mage

10 mJ/cm² exposure

1 Photon =

Acid & Base Positions

10 mJ/cm² exposure 2.5Å film slice

1 Acid =

1 Base =

Acid Latent Image
After Base Quench
10 mJ/cm² exposure
2.5Å film slice

1 Acid =

Deblocked Latent Image,

After acid diffusion 1.5 mJ/cm² exposure

2.5Å film slice $R_{diffusion} = 32Å$

Deblocking Density by Overlapping Spheres

1.5 mJ/cm² exposure 2.5Å film slice $R_{diffusion} = 32Å$

Simulation Results

Increasing Base

Simulated LER Results

Excellent Fit of (Dose)-1/2

Simulated Results in Agreement with Experimental Work

Number and Distribution of Acids Define LER *vs.* (Dose)-1/2 Behavior

V. Quantum Efficiency

Why do both EUV and DUV show the same linear behavior?

Quantum Efficiency

Number of Acids Generated

Number of Photons Absorbed

V. Quantum Efficiency

(41%)

 (6.7×10^{13})

Photons Absorbed

Need to Know:

- Absorption 125 nm
- Number of EUV Photons / mJ/cm²
 - # Photons $\Delta = (0.1 \text{ mJ/cm}^2)(0.41)(6.7 \times 10^{13} \text{ mJ/cm}^2)$

0.1 mJ/cm² EUV Photons

1 cm x 1 cm x 125 nm EUV-2D

Acids Generated

Absorbed

Need to Know:

- C-Parameter
- [PAG]
- Avogadro's Number

Szmanda's Base Titration Method

Quantum Efficiency

of EUV-2D at DUV and 193 nm

	OD (1/um)	C-Paramete	<u>r Ф</u>
DUV	0.37	0.037	0.33
193 nm	24.5	0.12	0.14

In principal, there is enough energy in an EUV photon to activate ~20-30 PAGs

Quantum Efficiency of EUV-2D is 2.1!

Wavelength	E _{size} (mJ/cm ²)	# of Photons in 1 mJ/cm ² x 10 ¹³	Absoption of 125 nm	Quantum Efficiency	Number of Acids Generated @ E _{size} x 10 ¹³
EUV	6.7	6.7	0.41	(2.08)	38.2
DUV	9.7	125	0.10	0.33	40.6

The number of acids generated at EUV and DUV are the same!

The LER vs. E_{size} Curves for both EUV and DUV are described by

Shot Noise (Poisson) Statistics: LER \propto Dose^{-1/2}

VII. Conclusions

Shot Noise observed at DUV and EUV for all resist systems

LER follows Poisson Statistical Rules: LER ∞ Dose^{-1/2}

Although EUV-2D follows a LER vs. E_{size} pattern defined by shot noise (Poisson) statistics, resists can be made with better LER/Sensitivity performance

Earlier studies of shot noise and LER either predicted:

- Catastrophic LER failure, or
- Shot noise barrier not yet encountered

We conclude that shot noise statistics have been with us all along in DUV and EUV

What Don't We Know?

How are multiple acids from a single photon arranged?

Will this arrangement affect LER?

VII. Acknowledgements

DARPA/SPAWAR

David Patterson Cynthia Hanson Donald Mullin

Sandia National Laboratories

Kevin McDonald Jerry Sledge Chip Stein

Dan Folk John Goldsmith Donna O'Connell

Shipley

Kathleen Spear Kathleen O'Connell

Doris Kang Tom Penniman

Chuck Szmanda

Pramod Kandanarachchi

Bob Blacksmith