Shot Noise, LER and Quantum Efficiency of EUV Photoresists Robert L. Brainard,^a Peter Trefonas,^a Jeroen H. Lammers,^b Charlotte A. Cutler,^a Joseph F. Mackevich,^a Alexander Trefonas and Stewart A. Robertson^a - Introduction - EUV and DUV Base Titration Experiments - Poisson Statistics of LER vs. E_{size} - LER Simulation Model - Quantum Efficiency - New Resist Systems - Conclusions Partial Support by DARPA and EUV-LLC a. Rohm and Haas Microelectronics b. Philips Research ## I. Introduction #### The 45 nm Node will require EUV Resists with Low LER and E_{size} : LER = 2 nm $$E_{\text{size}} = 2-15 \text{ mJ/cm}^2$$ #### Shot Noise Limit¹ = Limit imposed by statistical probability of underexposing a pixel ## **Shot Noise Limits** In 1998, John Hutchinson² compared **Shot Noise Limits** of 193 nm and EUV resists using a theoretical model of LER. | | 193 nm | 13 nm (EUV) | |--|--------|-------------| | Shot Noise Limit (10 mJ/cm ²): | 1 nm | 8 nm LER | | (1 mJ/cm ²): | 5 nm | 25 nm LER | Without considering secondary electrons or acid diffusion effects. More recently,³ several excellent papers considered role of shot noise in limiting the ability to print contact hole arrays. ⁽²⁾ Hutchinson, SPIE 1998 # **Shot Noise Limits** In 2002, Dentinger et. al.⁴ compared the LER of 25 resist formulations using DUV and EUV exposures. Ratio of LER_{EUV} vs. LER_{DUV} showed no statistically significant increase in EUV LER as photospeed is increased. ### **Authors' Reasoning:** Since DUV has 12X more absorbed photons than EUV and the LER ratios do not change with Dose: Shot noise does not effect LER down to 3 mJ/cm² Absorbed Photons = E_{size} x Abs x Photons/mJ ## **Materials** ### Experimental Resists based on EUV-2D Polymer $$R_1$$ R_2 R_3 OH Inhibiting Onium PAG Ar_nE⁺ X⁻ Non-Nucleophilic Base [Base]/[PAG] = 0 to 75% Ethyl Lactate Solvent # II. Base Titration Allowed Us to Study: #### Relationship between LER and E_{size} for Both EUV and DUV #### Statistical Analysis of LER vs. E_{size} **Poisson Statistics** #### **Acid - Base Simulation Program** Written for this Paper #### **Quantum Efficiency** C-Parameter (Szmanda Method) OD (2004 SPIE Paper) #### **Other Resist Systems** ## **III. Poisson Statistics of** # LER vs. E_{size} Poisson Statistics Apply to Absorption of Incident Photons: $$\sigma_{_N} = \sqrt{N}$$ $N = \text{number of absorbed photons per volume element} \propto \text{dose}$. Side wall roughness ∝ relative variation $$LER \propto \frac{\sigma_N}{N} = \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{dose}}$$ Base titration curves show the statistics of shot noise. Why do both EUV and DUV show the same linear behavior? ## IV. LER Simulation Model Schematic of Model Output of Model Aerial I mage 10 mJ/cm² exposure 1 Photon = ### **Acid & Base Positions** 10 mJ/cm² exposure 2.5Å film slice 1 Acid = 1 Base = Acid Latent Image After Base Quench 10 mJ/cm² exposure 2.5Å film slice 1 Acid = ## Deblocked Latent Image, After acid diffusion 1.5 mJ/cm² exposure 2.5Å film slice $R_{diffusion} = 32Å$ # Deblocking Density by Overlapping Spheres 1.5 mJ/cm² exposure 2.5Å film slice $R_{diffusion} = 32Å$ ## **Simulation Results** # **Increasing Base** ## **Simulated LER Results** ## Excellent Fit of (Dose)-1/2 Simulated Results in Agreement with Experimental Work Number and Distribution of Acids Define LER *vs.* (Dose)-1/2 Behavior # V. Quantum Efficiency Why do both EUV and DUV show the same linear behavior? **Quantum Efficiency** **Number of Acids Generated** Number of Photons Absorbed # V. Quantum Efficiency (41%) (6.7×10^{13}) #### # Photons Absorbed #### **Need to Know:** - Absorption 125 nm - Number of EUV Photons / mJ/cm² - # Photons $\Delta = (0.1 \text{ mJ/cm}^2)(0.41)(6.7 \times 10^{13} \text{ mJ/cm}^2)$ 0.1 mJ/cm² EUV Photons 1 cm x 1 cm x 125 nm EUV-2D ### # Acids Generated **Absorbed** #### **Need to Know:** - C-Parameter - [PAG] - Avogadro's Number Szmanda's Base Titration Method # **Quantum Efficiency** ## of EUV-2D at DUV and 193 nm | | OD (1/um) | C-Paramete | <u>r Ф</u> | |--------|-----------|------------|------------| | DUV | 0.37 | 0.037 | 0.33 | | 193 nm | 24.5 | 0.12 | 0.14 | In principal, there is enough energy in an EUV photon to activate ~20-30 PAGs # Quantum Efficiency of EUV-2D is 2.1! | Wavelength | E _{size} (mJ/cm ²) | # of Photons
in 1 mJ/cm ²
x 10 ¹³ | Absoption of 125 nm | Quantum
Efficiency | Number of Acids
Generated @ E _{size}
x 10 ¹³ | |------------|---|---|---------------------|-----------------------|--| | EUV | 6.7 | 6.7 | 0.41 | (2.08) | 38.2 | | DUV | 9.7 | 125 | 0.10 | 0.33 | 40.6 | The number of acids generated at EUV and DUV are the same! The LER vs. E_{size} Curves for both EUV and DUV are described by Shot Noise (Poisson) Statistics: LER \propto Dose^{-1/2} ## VII. Conclusions Shot Noise observed at DUV and EUV for all resist systems LER follows Poisson Statistical Rules: LER ∞ Dose^{-1/2} Although EUV-2D follows a LER vs. E_{size} pattern defined by shot noise (Poisson) statistics, resists can be made with better LER/Sensitivity performance Earlier studies of shot noise and LER either predicted: - Catastrophic LER failure, or - Shot noise barrier not yet encountered We conclude that shot noise statistics have been with us all along in DUV and EUV ## What Don't We Know? How are multiple acids from a single photon arranged? Will this arrangement affect LER? # VII. Acknowledgements #### DARPA/SPAWAR David Patterson Cynthia Hanson Donald Mullin #### **Sandia National Laboratories** Kevin McDonald Jerry Sledge Chip Stein Dan Folk John Goldsmith Donna O'Connell #### **Shipley** Kathleen Spear Kathleen O'Connell Doris Kang Tom Penniman Chuck Szmanda Pramod Kandanarachchi **Bob Blacksmith**