High resolution EUV microexposures at the ALS

Patrick Naulleau

Kenneth A. Goldberg, Erik Anderson, Jason P. Cain, Paul Denham, Brian Hoef, Keith Jackson, Anne-Sophie Morlens, Seno Rekawa

Lawrence Berkeley National Laboratory

Robert L. Brainard

Rohm and Haas

Kim Dean SEMATECH

MET printing station at Berkeley enables rrrrr advanced EUV learning at 0.3 NA and low k₁ From synchrotron Scanner Based on MET optic module • Magnification = 5x, NA = 0.3 Reticle stage Rayleigh resolution = 27 nm • Field size = 200x600 μm • Programmable coherence illuminator for low k₁ Reticle and wafer load-lock MET and manual transfer systems Wafer-height sensor Wafer stage and nm-resolution wafer-height height sensor sensor and focus actuation Pupil-fill monitor Pupil-fill monitor EUV Symposium 2004, 11/3/04 Patrick Naulleau

Printing operations began 2/20/04

- Main vacuum chamber installed in temperaturecontrolled room. Optic held to ±0.01 °C
- Transfer systems installed in aminefiltered clean room with PEB hot plate
- Wafer and reticle
 vacuum load locks
- Throughput:
 6-12 wafers per day
- Reticle exchange time: 30 minutes

EUV-2D resist demonstrated to have a resolution cut-off of ~45 nm

Processing Conditions: S Thickness 125-nm PEB 130 °C 90 Sec Develop 45 Sec S Sensitivity 6.8 mJ/cm²

Rohm and Haas MET 1K resist shows 10-15 nm resolution improvement over EUV 2D

Patrick Naulleau

Processing Conditions: § Thickness 125-nm § PEB 130 °C 90 Sec § Develop 45 Sec § Sensitivity 27 mJ/cm²

40-nm lines and spaces through focus in MET 1K (30-nm focus steps)

SEMATECH

MET 1K provides large increase in depth-of-focus compared to EUV 2D

Observed performance still resist limited

MET 1K provides large improvement in 50-nm dense line process window

Brighfield to darkfield comparison shows that mid-range flare is not a concern

MET 1K resist shows modulation down to the 25-nm level

Cross Sections of Resist MET 1K (through dose)

Cross-sections obtained at SEMATECH

17

MET 1K process optimization still underway

New process enables low-LER sub-30-nm isolated lines in MET 1K resist

SB = 130° PEB = 120°

CD = 28.3 nm LER = 4.2 nm LER values are single sided 3σ including periods up to 4x the CD

SB = 120° PEB = 120° CD = 28.8 nm LER = 3.2 nm

SB = 130° PEB = 130°

CD = 38.6 nm LER = 4.2 nm

Summary

- MET at Berkeley operational since February 2004
- System includes programmable coherence illuminator
- Approximately 100 resists and 9 reticles tested to date
- Hypothesized resolution limit of EUV 2D verified
- 25-nm nested and isolated printing demonstrated in chemically-amplified resist
- Full process window characterization of printing in new MET 1K resist completed
- Brightfield to darkfield process window comparison verifies that mid-range flare is not an issue
- Cross-field aberration studies underway
- Defect printability studies underway

