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Flare in EUV lithography

• Cause: surface roughness on optics

• Scales as 1/λ2, so more problematic at EUV 
wavelengths

• Effects:
• Scatters light out of bright regions and into dark 
regions ⇒ reduces contrast

• Couples local light intensity to features 1000’s of 
mm away ⇒ pattern dependent

• Simple calculations ⇒ 1% (absolute) change in flare 
causes 0.86 nm CD change 
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Estimating impact of flare variation on CD control
• Statistical simulation parameters (CCI design)

– Average mask transmission: 80–90% 
– Mean focus error: -0.05–0.05 µm
– Cross-slit focus variation (1σ): 0.006–0.008 µm
– Mean dose error: ±10%
– Cross-slit dose variation (1σ): 2.0–2.6%
– Mean flare: 10–15%
– Flare variation (1σ): 1–3% (absolute)
– 500 calculations per set of conditions

• Constant simulation parameters
– 45nm lines on a 110nm pitch
– Partial coherence = 0.7
– NA = 0.25
– Wavefront error = 0.045λ
– Absorber stack 120nm thick
– Normal incidence
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Simulation results

• Flare variation is largest factor influencing CD control
• Effect of flare variation is 3.5X the effect of mean flare 
• Model predicts 1σ flare variation must be less than 1.7%

(absolute) for ±10% CD control at -0.05 µm focus error

Flare_Var(1,3)
Def_Err(-0.05,0.05)
Dose_Mean(0.27,0.33)
Flare_Mean(10,15)
Mask_T(80,90)
Def_Err(-0.05,0.05)*Flare_Var(1,3)
Def_Var(0.02,0.03)
Mask_T(80,90)*Flare_Mean(10,15)
Def_Var(0.02,0.03)*Dose_Mean(0.27,0.33)
Mask_T(80,90)*Dose_Mean(0.27,0.33)

Term
-0.0424507
0.03301723
0.01629922
-0.0122251
-0.0108554
-0.0083664
-0.0074315
-0.0037086
-0.0029393
-0.0029023

Orthog Estimate
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Flare calculations, p. 1

Stearns et al. (J. Appl. Phys. 84, 1998):
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Flare calculations
• Data scaled so that poly 

lines are 0.09 µm 
(appropriate for 0.1 NA 
ETS)

• Include measured 
aberrations from ETS 
field center

• Average flare over 
0.09x0.09 µm2 regions 
inside of a 2x2 mm2

section of mask data

Memory Log
ic
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Calculation results
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Proposed compensation strategies 
(Krautschik et al.)
• Selective sizing

– Resize lines according to known d(CD)/dF response
– Apply global resizing in middle of mask where flare 

variation assumed to be small
– Apply local resizing in corners where variation is largest
– Iterate to convergent solution

• Dummification (i.e., tiling)
– Reduce flare variation by reducing pattern density 

variation
– Add dummy features to areas of low pattern density
– Dummy features must not interfere with circuit function
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No place to apply global resizing
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Effects of sizing on process window
TFFyxIyxI ×+−×= )1(),(),( 0

NA = 0.25, Θi = 6°, σ = 0.7, λ = 13.5 nm, <T> = 75%
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Overlapping process window for dense and 
isolated lines possible with biasing but 
smaller window than without flare variation
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MEEF effects minimal, and mean-to-
target CD control not critical for biasing
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Various tiling algorithms tried

• Origins in CMP processes
• Rule-based

– Insert dummy features in all appropriate empty space
– Increases pattern density uniformity over short length scales

• Model-based CMP
– Insert tiles according to empirical model that relates pattern 

density and polish uniformity
– Considers weighted pattern densities over mm length scales

• Model-based EUV
– Place subresolution tiles
– Minimize pattern density variation with optimization calculation

that attempts to consider all relevant length scales in PSF
– Extend tile placement into borders with model-based CMP 

algorithm
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Tiles from EUV algorithm

Circuit
features
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Effects of tiles on flare
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Conclusions

• Barring significant improvements in EUV optical 
fabrication technology, mask compensation will be 
required to reduce flare variation

• Selective sizing is feasible but is computationally 
expensive and reduces the focus latitude

• Tiling also reduces variation but certain features are 
not tiling-friendly

• Both selective sizing and tiling will likely be required 
for full compensation
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