

Outline

- Description of EUV flare
- Calculation details
- Compensation strategies
- Conclusions

Flare in EUV lithography

- Cause: surface roughness on optics
- Scales as $1/\lambda^2$, so more problematic at EUV wavelengths
- Effects:
 - Scatters light out of bright regions and into dark regions ⇒ reduces contrast
 - Couples local light intensity to features 1000's of mm away ⇒ pattern dependent
- Simple calculations \Rightarrow 1% (absolute) change in flare causes 0.86 nm CD change

Estimating impact of flare variation on CD control

- Statistical simulation parameters (CCI design)
 - Average mask transmission: 80–90%
 - Mean focus error: -0.05–0.05 μm
 - Cross-slit focus variation (1 σ): 0.006–0.008 μ m
 - Mean dose error: ±10%
 - Cross-slit dose variation (1 σ): 2.0–2.6%
 - Mean flare: 10–15%
 - Flare variation (1 σ): 1–3% (absolute)
 - 500 calculations per set of conditions
- Constant simulation parameters
 - 45nm lines on a 110nm pitch
 - Partial coherence = 0.7
 - NA = 0.25
 - Wavefront error = 0.045λ
 - Absorber stack 120nm thick
 - Normal incidence

digitaldi

Simulation results

Flare variation is largest factor influencing CD control
Effect of flare variation is 3.5X the effect of mean flare
Model predicts 1_σ flare variation must be less than 1.7% (absolute) for ±10% CD control at -0.05 µm focus error

Flare calculations

- Data scaled so that poly lines are 0.09 μm (appropriate for 0.1 NA ETS)
- Include measured aberrations from ETS field center
- Average flare over 0.09x0.09 μm^2 regions inside of a 2x2 mm^2 section of mask data

Calculation results

Proposed compensation strategies (Krautschik *et al.*)

- Selective sizing
 - Resize lines according to known d(CD)/dF response
 - Apply global resizing in middle of mask where flare variation assumed to be small
 - Apply local resizing in corners where variation is largest
 - Iterate to convergent solution
- Dummification (i.e., tiling)
 - Reduce flare variation by reducing pattern density variation
 - Add dummy features to areas of low pattern density
 - Dummy features must not interfere with circuit function

No place to apply global resizing

Effects of sizing on process window

$$I(x, y) = I_0(x, y) \times (1 - F) + F \times \langle T \rangle$$

NA = 0.25, $\Theta_i = 6^\circ$, $\sigma = 0.7$, $\lambda = 13.5$ nm, $\langle T \rangle = 75\%$

Overlapping process window for dense and isolated lines possible with biasing but smaller window than without flare variation

35 nm in resist Dense: 90 nm pitch Isolated: 270 nm pitch

25% average pattern density

MEEF effects minimal, and mean-totarget CD control not critical for biasing

- MEEF varies with flare and focus
 - Effect of focus larger but only 1-2%

35 nm in resist; 90 nm pitch

Linear behavior implies MTT

CD control not critical

Various tiling algorithms tried

- Origins in CMP processes
- Rule-based
 - Insert dummy features in all appropriate empty space
 - Increases pattern density uniformity over short length scales
- Model-based CMP
 - Insert tiles according to empirical model that relates pattern density and polish uniformity
 - Considers weighted pattern densities over mm length scales
- Model-based EUV
 - Place subresolution tiles
 - Minimize pattern density variation with optimization calculation that attempts to consider all relevant length scales in PSF
 - Extend tile placement into borders with model-based CMP algorithm

Tiles from EUV algorithm

Effects of tiles on flare

Conclusions

- Barring significant improvements in EUV optical fabrication technology, mask compensation will be required to reduce flare variation
- Selective sizing is feasible but is computationally expensive and reduces the focus latitude
- Tiling also reduces variation but certain features are not tiling-friendly
- Both selective sizing and tiling will likely be required for full compensation

