#### Anamorphic High NA Optics enabling EUV Lithography with sub 8nm Resolution





Tilmann Heil, Bernhard Kneer, Sascha Migura, Johannes Ruoff, Matthias Rösch, Jens Timo Neumann, Winfried Kaiser (ZEISS); Jan van Schoot (ASML).

2015 International Symposium of Extreme Ultra Violet Lithography October 7th, 2015 • Maastricht, Netherlands

#### This talk is about resolution



| Resolution                                  | $= k_1 \cdot \begin{pmatrix} \lambda \\ NA \end{pmatrix} EUV 13.5nm \\ High-NA \end{pmatrix}$ |     |      |     |     | ۲<br>(s | NA > 0.5<br>enables<br>(sub) 8nm |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------|-----|------|-----|-----|---------|----------------------------------|--|--|
| NA                                          | 0.33                                                                                          | ••• | 0.4  | ••• | 0.5 |         | 0.6                              |  |  |
| Resolution @ k1=0.3<br>single exposure / nm | 12.3                                                                                          | ••• | 10.1 | ••• | 8.1 |         | 6.8                              |  |  |

- How does a High-NA EUV Optics look like?
- How does it image?
- Can we further optimize system performance?

#### **Structure of presentation**



2015 EUVL Symposium Maastricht

#### The EUV Optical System: The finer the resolution, the larger the angles!





Carl Zeiss SMT GmbH, Tilmann Heii et al.

### Higher NA increases the light cone above the wafer, and...



... increases the angles on M5, and...



#### ... increases the angular spread on M5.



## Multi-layer coatings set limits for angles & angular spread on EUV mirrors.







Standard EUV coatings are not able to reflect the combination of large angles and large angular spreads on M5 needed for high-NA.

#### ➔ Angles must be reduced for high-NA EUV optics.

### There is a solution: Obscuration – We drill a hole into the mirror.





The obscuration massively reduces angles & angular spread on the mirrors...



...which significantly increases the transmission of the optical system vs. 3300!



#### The EUV Optical System





# Fields and light cones at reticle and wafer are connected via MAG.





#### Increasing NA, light cones @ reticle start to overlap.





#### **High-NA EUV – Conventional approaches fail**





Carl Zeiss SMT GmbH, Tilmann Heil et al.

#### Maybe looking at movies helps...



Reality Film Cinema Widescreen



Image by Bernd Geh









Record with a conventional lens

Project with a conventional lens

Same aspect ratio, same angles. BUT: Bad usage of space, Lower resolution

# ...where anamorphic cinematographic lenses are used...



Film Cinema Widescreen



Reality









Record with an Anamorphic lens\* Project with an Anamorphic lens

Anamorphic MAG vertically "stretches" image for good usage of space, lower angles , better resolution

\*e.g. a ZEISS Master Anamorphic Lens

Carl Zeiss SMT GmbH, Tilmann Heil et al.

# ...to reduce angles at the mask and increase resolution in lithography.



Film Cinema Widescreen Reality 50 "Anamorphic" Anamorphic Mask writing Projection Mask Wafer Image **Electronics** Design

Same image on wafer, but much lower angles in stretching direction!

### The solution: Reducing the angles by increasing MAG only in the direction that matters...





### ...enables a High-NA EUVL optical system with a 26mm slit and Half-Field.





# The Anamorphic High-NA EUV Projection Optics with obscuration...



### ... is a big optical system using large mirrors with extreme aspheres and accuracy requirements.





→ Challenge to optics technology and manufacturing, but no fundamental limits

#### **Structure of presentation**





#### Compare given NA=0.33 Isomorphic imaging vs. Anamorphic High-NA with obscuration





Carl Zeiss SMT GmbH, Tilmann Heil et al.

# Obscuration may lead to an application dependent contrast loss...





Carl Zeiss SMT GmbH, Tilmann Heil et al.

#### ...which can be tolerated if kept below ~20% radius.





Carl Zeiss SMT GmbH, Tilmann Heil et al.

# Excellent Imaging Scaling with NA – Obscuration and Anamorphicity have no visible impact on process window





Focus axis scales according to familiar 1/NA<sup>2</sup> behaviour.

Good Imaging scaling with NA

No obscuration effects, no orientation dependence (H-V) due to Anamorphicity

Carl Zeiss SMT GmbH, Tilmann Heil et al.

#### **Structure of presentation**





# The Optics can be designed in various ways to fit the (26 x 16.5)mm wafer field on the (132 x 132)mm reticle



ZARK

# The Optics can be designed in various ways to fit the (26 x 16.5)mm wafer field on the (132 x 132)mm reticle



#### First evaluation of Anamorphicity Options via MEF\*



$$MEF^* = \frac{\Delta CD_{Wafer WL}}{\Delta CD_{Reticle RL}}$$

#### **MEF\*** measures directly the impact of mask errors on wafer errors.

#### No normalization with MAG. Hence, MEF\* is different for H- and Vstructures in Anamorphic Lithography

Carl Zeiss SMT GmbH, Tilmann Heil et al.

#### A MAG of 4.8x/7.5x improves the critical Mask Error Sensitivity MEF\* by ~20% for vertical structures...





#### 12nm spaces through pitch, small annular setting

## ...while imaging and process windows using 4x/8x and 4.8x/7.5x optical systems are very similar.



# Both MAG options are comparable in terms of optical design complexity, optics technology and manufacturing.

Carl Zeiss SMT GmbH, Tilmann Heil et al.

2015 EUVL Symposium Maastricht

ZEK

#### **Structure of presentation**





#### In conclusion...



- Anamorphic Lithography with Half Field is making High-NA EUVL economically feasible with NA >0.5 and utilizing the existing 6" mask infrastructure.
- Simulations based on the considered High-NA concept show excellent imaging performance in line with the expected NA scaling.
- An optimization of the optics MAG ratio is under investigation and may lead to a further improved overall system performance.



### Bundesministerium f ür Bildung und Forschung

 For funding of the projects 13N8088, 13N8837, 13N9112 and 13N10567 in the framework of the MEDEA+ / CATRENE programs

### EUV Teams at ZEISS & ASML and our partners



#### We make it visible.