Properties and performance of EUVL pellicle membranes

<u>Emily Gallagher</u>, Johannes Vanpaemel, Ivan Pollentier, Houman Zahedmanesh, Christoph Adelmann, Cedric Huyghebaert, Rik Jonckheere, Jae Uk Lee

IMEC, Kapeldreef 75, 3001 Leuven, Belgium

Introduction

Transmission and process methods

Thermal considerations and carbon nanomaterials

Summary

Measurement methods explained in Ivan Pollentier's poster P-MP-06 "Optical testing of EUV pellicle materials"

Pellicle perspective - EUV

Most materials absorb strongly at 13.5nm

- DUV polymer pellicles have >99% transmission; this is not possible
- Developing an EUVL pellicle is difficult

Initial solutions exists

- Si based: free standing and grid-supported
- SiN based: free standing

imec is developing <u>alternative</u> membrane materials that meet or exceed ASML specifications^{*}

F. Dhalluin et al., "Grid-supported EUV pellicles: A theoretical investigation for added value," Proc. SPIE 9658, Photomask Japan 2015

Pellicle requirements

High EUV transmission: 90% single-pass

• Uniform \rightarrow optical variations minimized

Tensile intrinsic stress

- No wrinkles
- Unchanged by handling, pump-down, shipping

Lifetime

No change during exposure to EUV light & H*

* C. Zoldesi, et al., "Progress on EUV pellicle	
development," Proc. SPIE 9048 (17 April 2014	4)

	Pellicle Requirement	HVM Value*	
membrane	EUV transmission	90% single pass	
	EUV T spatial non-uniformity	< 0.2%	
	EUV T angular non-uniformity	<300 mrad angle @ pell.	
	Withstand dynamic heat load	5 W/cm2 incident EUV	
	Lifetime EUV+H2	3 Pa > 315 hours	
with frame	2D size inner	110.7 x 144.1 mm2	
	2D size outer	117 x 151 mm2	
	Stand-off distance	2.5 +/- 0.5 mm	
	Max acceleration	100 m/s2	
	Max ambient pressure change	< 350 Pa/s	

EUV Pellicle triangle?

General approach to EUV pellicle development

To reduce absorption (increase transmission)

I. Choose the appropriate materials: $n \sim I$ and low k

 $T = \exp\left(-\frac{l}{l_{att}}\right)$ atoms/volume

2. Reduce number of atoms

Strategies to reduce absorption

IMCC E. Gallagher

EUVL Symposium, Maastricht

Introduction

Transmission and process methods

Thermal considerations and carbon nanomaterials

Summary

Wafer-based process flow

IMCC E. Gallagher

Thinned Si_xN_y film

SiN can have many roles: substrate (sacrificial), pellicle membrane or part of composite membrane

SiN can be thinned from as-deposited thickness

Note: External and internal films graphed; stoichiometry varies in the sample set

DSA-patterned membrane: plan

Leverage cylinder polymer DSA used for photolithography with tunable pitch

Methodology for initial test:

- Wafer with SiN membrane windows ~100nm thick
- Coat wafer with block copolymer PS-b PMMA
- Cleave into pieces for etch
- Strip PMMA

(10) After DSA etch and strip Etched SixNy membrane

DSA-patterned membrane: images

Membrane windows visually intact

Top down SEM shows etched pattern mimics DSA pattern

X-section shows partial removal of top layer

DSA-patterned membrane: results

Initial results show enhanced transmission

Next: systematic study (vary DSA pitch, thickness, etc.) to study mechanical strength and scattering

Introduction

Transmission and process methods

Thermal considerations and carbon nanomaterials

Summary

Heat : transfer options for pellicle membrane

- Vacuum prevents: evaporation, convection
- Conduction is very limited in thin films
- Only option is radiation
 - Depends on material emissivity
 - Test must be developed

Heating : furnace cycle

Furnace heating in argon environment

May not be matched to EUV heating, but accessible method to add visibility to lifetime concerns

E. Gallagher

imec

Heating results : microscope images

Visible change in polysilicon

No change in SiN

Good screening test, but must correlate heat cycle to realistic to EUV heating

Carbon nanomaterials

All have desirable thermal properties and can be very thin

	500 nm 500 nm Top-down SEM (70nm thick)	200 nm Top-down SEM (30nm thick)	3 cm BMMA/Graphene sheet on LPCVD SiN
	Carbon nanotubes CNT (in collaboration w/ university)	Carbon nanosheets CNS (imec)	Graphene (imec)
╋	Lowest density	Grow on any surface, no catalyst	Uniform thickness
	Impurities and optical uniformity tbd	Density higher than CNT, dangling bonds	Transfer and scaling to full size will be difficult

Caution: may change when exposed to EUV + H

E. Gallagher

H* exposure of carbon materials

CNT and CNS are thinned by exposure to H-radicals

P-Si and SiNx do not show any significant change

Carbon nanomaterials cannot be used as a pellicle without capping layers

Combine films for pellicle solution

Simulated transmission of a carbon pellicle (effective thickness) with 3nm SiN capping layers

3 nm SiN 8 nm C 3nm SiN

90% EUV transmission

Introduction

Transmission and process methods

Thermal considerations and carbon nanomaterials

Summary

Fabrication and testing of EUVL pellicle candidates established at imec

Meeting all requirements simultaneously is a large challenge

Anticipate best EUV pellicle will be multi-layered

Acknowledgements

The authors would like to thank:

- ASML pellicle team for valuable discussions
- University of Chicago for supplying DSA sample
- University of Cambridge for supp in CN
- Norcada and Exogenesis for Specific Action 10 and 10

This project has recorded for the from the Electronic Component Systems for European Leadership Joint Undertaking under good agreement No 662338. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Netherlands, France, Belgium, Germany, Czech Republic, Austria, Hungary and Israel.

il sa ples

bles