Defect review capability on Actinic blank inspection tool

Lasertec Corporation:
Hiroki Miyai

EUVL Infrastructure Development Center (EIDEC):
Hidehiro Watanabe
Contents

1. ABI tool development status
2. Defect review capability
3. Bright field review
4. Summary
ABI development chronicle

Proof of Concept
Mirai (2001-2005)
- Feasibility study
- Dark field Actinic imaging

Full field Prototype
Mirai-Selete (2006-2011)
- Full mask field inspection
- Phase defect imaging

HVM Prototype
EIDEC-Lasertec (2011-2015)
- Printable phase defect management
- 1nm(h)/50nm(w) sensitivity
- 45min inspection time
- Defect location identification

Actinic Blank Inspection tool is ready for defect management in HVM
ABI tool’s detection capability

All printable defects are manageable with the improved ABI

Improve illumination optics

ABI detection capability

Yamane T., Photomask Japan 2015
Suzuki T., Photomask Japan 2015

100% capture area

improved low aspect ratio
defect detection capability
ABIsignal intensity and Printability

ABI dark field review is effective for predicting whether a defect is perfectly covered by absorber or not.

Clear correlation between ABI signal intensity and printing result.

EIDEC, IMEC co-evaluation
Noriaki Takagi, Photomask Japan 2015
Defect location accuracy

Configuration of optics for defect location measurement

Accurate defect location measurement is available

Location measurement in full mask area

Measurement Repeatability
(21-point average, 3σ)

- 21-point cross mark measurement in 10-days sampling
- Position compensation using 4 FMs applied

x: 12.4 nm
y: 18.4 nm
ABI inspection and review - 2 years of experience

ABI tool is continuously evaluating EUV blanks;
- total scanned area up to $524 \times (100 \times 100)$ mm2,
- total reviewed spots up to 173,000 points
1. ABI tool development status
2. Defect review capability
3. Bright field review
4. Summary
Defect characterization – ABI flow

- Defect map with DSI (defect signal intensity)
- False elimination
- Phase/Amplitude defect classification
- Pit/Bump classification
- Measurement of defect location and size

Review of each defect

1μm

High resolution

1μm
Defect review functions on ABI dark field

Accurate DSI evaluation

Amplitude classification with DUV illumination

Defect location & size measurement

Pit/Bump classification with through focus

Accurate DSI evaluation

Amplitude defect Signal intensity

EUV illumination < DUV illumination

Printing impacts are represented not by SEVD size but by ABI signal intensities

DSI : Defect Signal Intensity

DSI = 600 (au)

Defect location & size measurement

Pit/Bump classification with through focus

Focus offset -2.0um -1.0um 0.0um 1.0um 2.0um

A = 9000 nm²

Accurate defect location

Dark field imaging is effective to find the characteristics of defect

Printing impacts are represented not by SEVD size but by ABI signal intensities

Amplitude defect Signal intensity

EUV illumination < DUV illumination

Accurate DSI evaluation

Defect location & size measurement

Pit/Bump classification with through focus

Focus offset -2.0um -1.0um 0.0um 1.0um 2.0um

A = 9000 nm²

Accurate defect location

Dark field imaging is effective to find the characteristics of defect
Contents

1. ABI tool development status
2. Defect review capability
3. Bright field review
4. Summary
Defect characterization – ABI flow

- Defect map with DSI (defect signal intensity)
- Review of each defect
- False elimination
- Phase/Amplitude defect classification
- Measurement of defect location and size
- Pit/Bump classification
- Printability prediction based on bright field observation

New function
Optics configuration for Bright field review

CCD camera

EUV illumination

Scattered light from the mask

Dark field review

Switch mirror for bright field review
CRA : 6 degrees
Specular reflection from the mask

Bright field review

BF&DF review are available with ABI tool
Defect review images with BF/DF

<table>
<thead>
<tr>
<th>Defect</th>
<th>Bright field</th>
<th>Dark Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDM Pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSI=400 40nm x 1.2nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSI=400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bright field review represents the specular reflection from the mask
Through focus analysis using bright field

Bright field simulation images for Pit/Bump phase defects

<table>
<thead>
<tr>
<th>Focus [nm]</th>
<th>-800</th>
<th>-400</th>
<th>0</th>
<th>+400</th>
<th>+800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100nm x 1.0nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100nm x 1.0nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pit and bump have different Bright/Dark characteristics
Through focus analysis using bright field (real image)

Bright field observations for Pit/Bump phase defects

<table>
<thead>
<tr>
<th>Focus [nm]</th>
<th>-800</th>
<th>-400</th>
<th>0</th>
<th>+400</th>
<th>+800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100nm x 2.1nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110nm x 0.9nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Through focus imaging with bright field is effective for defect analysis
Pattern defect review images with BF/DF

<table>
<thead>
<tr>
<th>Design</th>
<th>Bright field</th>
<th>Dark Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bright lines in dark field images represent absorber pattern edges.

Difficulty in identifying a defect as INTRUSION or PROTRUSION.

Bright field review brings useful information for lithographic impact prediction
Contents

1. ABI tool development status
2. Defect review capability
3. Bright field review
4. Summary
Summary

1. The ABI HVM prototype supports to improve the quality of EUV mask blanks by its inspection and review functions.

2. Bright field review capability is additionally installed on the ABI tool. It facilitates predicting lithographic impact using the mask review images by the tool.
Acknowledgements

The authors would like to thank all the EIDEC BI program member companies.
The authors would also like to give special thanks to Takeshi Yamane and Kenji Sakamoto of EIDEC for their supports on computer simulation.

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) and Japan Ministry of Economy, Trade and Industry (METI).
Thank you very much for your attention.