EUV LITHOGRAPHY
ON THE MOVE FROM PRE-
PRODUCTION TO PRODUCTION
AUTHORS

<table>
<thead>
<tr>
<th>imec</th>
<th>ASML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Mieke Goethals</td>
<td>Timon Fliervoet</td>
</tr>
<tr>
<td>Philippe Foubert</td>
<td>Vadim Timoshkov</td>
</tr>
<tr>
<td>Masks</td>
<td>Friso Wittebrood</td>
</tr>
<tr>
<td>Rik Jonckheere</td>
<td>Roderik Van Es</td>
</tr>
<tr>
<td>Emily Gallagher</td>
<td>Mark Van Der Veer</td>
</tr>
<tr>
<td>Lieve Van Look</td>
<td>Ronald Cox</td>
</tr>
<tr>
<td>Scaling</td>
<td>Bart Laenens</td>
</tr>
<tr>
<td>Jan Hermans</td>
<td>ASML-Brion</td>
</tr>
<tr>
<td>Werner Gillijns</td>
<td>ASML DEMOLAB team</td>
</tr>
<tr>
<td>Eric Hendrickx</td>
<td>ASML local support</td>
</tr>
<tr>
<td>Geert Vandenberghe</td>
<td></td>
</tr>
<tr>
<td>Kurt Ronse</td>
<td></td>
</tr>
<tr>
<td>Greg McIntyre</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Introduction

NXE: 3100

NXE: 3300

Conclusions
IMEC EUV LITHOGRAPHY

EXPOSURE TOOL ROADMAP

<table>
<thead>
<tr>
<th>2006 - 2011</th>
<th>2011 - now</th>
<th>Installing now</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASML Alpha-Demo tool</td>
<td>ASML NXE:3100 – pre production</td>
<td></td>
</tr>
<tr>
<td>40nm → 27nm LS</td>
<td>27nm, 22nm, 18nm LS</td>
<td></td>
</tr>
<tr>
<td>0.25 NA</td>
<td>0.25 NA</td>
<td>ASML NXE:3300 – production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22, 16nm LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.33 NA</td>
</tr>
</tbody>
</table>

Improvements in Resists, masks, CD control, overlay, ...
CONTENTS

Introduction

NXE: 3100

NXE: 3300

Conclusions
NXE:3100

Main specifications

- Field size: 26x33mm²
- NA=0.25 and σ = 0.81
- 6 off-axis illumination conditions available
- MMO vs NXT:1950i < 7nm

Track: TEL LITHIUS™ Pro for EUV Discharge Produced Plasma source

SUSS MicroTec
MaskTrack Pro

EUV Technologies
Resist Outgassing tool

Session VII: Variability of EUV Resist Outgas Test Results
Ivan Pollentier
NXE:3100 PRODUCTIVITY
CUMULATIVE WAFERCOUNT

- 24/5 operation
- DPP source 2014 average power at IF 5.3W
- Average power at waferstage 390 microWatt/mm
- Average 2014 throughput 3-4 full wafers per hour
- Average system availability 2014 ~52%

Cumulative wafercount of exposed wafers now exceeds 9000 wafers on NXE:3100
NXE:3100 PRODUCTIVITY
COLLECTOR LIFETIME AND IMPACT ON POWER

- In 2013-2014: NXE:3100 DPP source was operated using the same swap flange (collector mirror + debris mitigation) for ~9 months
- Due to low power on system, it was then decided to replace the swap flange (collector + debris mitigation system)
- Both power at IF and power at waferstage were fully recovered, improving productivity
- Post-mortem confirmed collector mirror erosion

After 3 years of operation, in July 2014 power was again at record high, with new source collector mirror (~9 months life)
EUV MATERIALS
CAR ENABLEMENT AND ALTERNATIVE RESISTS

- None of the currently available CA EUV resists come close to the required <4nm LWR at an acceptable sensitivity <40mJ/cm²
- Optical resolution limit of NXE:3300 (26-30nm pitches) not yet printed in CA EUV resist

⇒ Strong need for EUV resist post-treatment, or alternative EUV resists / materials

- Investigating CAR enablement
 - Dry Development Rinse Process (Nissan Chemical)
 - Benefit demonstrated: collapse prevention
 - Challenge: LWR
 - Negative Tone Imaging (FFEM)
 - Currently comparable to positive tone imaging
 - Challenge: resolution

Initial data of CAR enablement promising
Final benefit to be demonstrated - FAB ready
EUV MATERIALS

CAR ENABLEMENT AND ALTERNATIVE RESISTS

- Metal containing resists – open to all collaborations

Early Exploratory Research
(Universities, Research Institutes, New startup, resist vendors)

Not done at imec today

- Synthesis
- Simple Patterning (MET, PSI, EB)
- Coupon Processing

Lab ➔ **Lab-to-Fab Cross-Over** ➔ **Fab**

Advanced Patterning Process Development Integration in device flow

EUV scanner compliance (contamination, outgassing)
FAB\track compliance (contamination, compatibility with standard flows and chemicals)

Challenge:
- Dose
- 85mJ/cm²

Photo condensable Metal Oxide resist (Inpria)
First 18nm LS pattern exposed on NXE:3100

Session IV: Progress on EUV Resist Materials and Processes at imec

Mieke Goethals
CAN WE KEEP THE EUV MASKS CLEAN?
MASK HANDLING IN PLACE AT IMEC

Mask shop

EUV Pod

Mask cleaner
MT-Pro

InSync: Automated transfer

Backside inspection:
on Nanometrics SPARK

Front and Backside cleaning

Dedicated pod per mask

Entegris storage cabinet

NXE:3100

3300 config.

Frontside and Backside defect Monitor

Disto monitor

Infrastructure and procedures developed to limit and remove particle adders on mask frontside and backside
CAN WE KEEP THE EUV MASKS CLEAN?
LOW-IMPACT MASK CLEANING FLOW DEMONSTRATED

- Mask cleaning is required for
 - Small particles added to the frontside of the mask
 - Remove large particles from mask backside
- After optimizing mask cleaning recipe – demonstrated >100 cleans with no CD impact
- Mask cleaning evaluated on reticles with etched ML for dark image border generation
 - At field edge with etched ML – quantified cleaning impact as 5.6nm exposure field edge shift (4x) per clean (2 masks)

PMJ 2014: Towards reduced impact of EUV mask defectivity on wafer
Rik Jonckheere
CAN WE KEEP THE EUV MASKS CLEAN?
FRONTSIDE PARTICLE ADDERS IN 3100 SCANNER

- Methodology for estimating likelihood of frontside particle adder
 - Number of defects repeating from die-die on wafer, counts mask defects and particle adders on mask
 - Mask cycling in scanner was done, to increase mask handling
 - Increase of number of die-die repeating defects on wafer points to particle adder on mask
- By optimizing mask environment in 3100 scanner, a similar low chance for adding a particle is now demonstrated on 3100 as reported on 3300

![Graph showing particles per reticle pass (PRP) for different systems tested in H2 2013 during integration. The graph compares 3100 and 3300 systems, with 3100 level at imec 0.006.](image)
ELECTRICALLY FUNCTIONAL FLASH CELL DEMONSTRATOR

- FLASH – 20nm Half Pitch (HP)
 - CG CORE: 80nm pitch EUV + Self Aligned Double Patterning (Spacer) patterning
 - Realizing 40nm pitch
 - Electrically working 8-cell strings demonstrated

- Proposed outlook: FLASH 15nm HP
 - Next step: 60nm pitch EUV – 15nm after SADP

CONTENTS

Introduction
NXE: 3100
NXE: 3300
Conclusions
NXE:3300 CLUSTER
STATUS AND OUTLOOK

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2013</td>
<td>TEL Lithius Pro-Z mechanical install</td>
<td>Done</td>
</tr>
<tr>
<td>Q3 2013</td>
<td>Lithius Pro-Z SAT and EUV resist installation</td>
<td>Done</td>
</tr>
<tr>
<td>Wk37-39</td>
<td>NXE:3300 Beam Transport System installation at imec</td>
<td>Done</td>
</tr>
<tr>
<td>Wk40</td>
<td>NXE:3300 Drive laser installation at imec</td>
<td>Done</td>
</tr>
<tr>
<td></td>
<td>First light in NXE:3300 source in VHV</td>
<td>Done</td>
</tr>
<tr>
<td>Wk 41.5</td>
<td>Start prepack of scanner in VHV</td>
<td>Done</td>
</tr>
<tr>
<td>Wk37.3 2014</td>
<td>Scanner target shipment date, system assembly in imec cleanroom</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Wk05.5 2015</td>
<td>Finish NXE:3300 SAT</td>
<td></td>
</tr>
</tbody>
</table>

Scanner is being installed at imec
SAT completed target wk05.5, 2015
N10, N7 SCALING VEHICLE FOR NXE:3300 EUV LEARNING

- Supernova vehicle
 - Back end vehicle V0,M1,V1,M2
 - Product-like mask layout
 - 193i and EUV versions

- Patterning assessment
 - Metal1 LE3 - EUV comparison
 - V0 LE2 - EUV comparison
 - Metal2 SADP - EUV comparison

- EUV adoption assessment
- Validate N10 BEOL Design Rule (LE^3, SADP,EUV)
- Feedback learning to N7 DR/process assumption

Process
Target: 193inm process ready Nov

Mask
Metal mask available – first exposures done

Process
Target: EUV process ready end Q1 2015

Backend shortloop vehicle process work for N10, N7 learning and EUV – 193i comparison is starting
OPC MODEL CALIBRATION ON NXE:3300
N10, N7 METAL AND VIA LAYERS

- Dedicated EUV model calibration mask was generated
 - Through pitch patterns, 2D patterns
 - Shadowing: patterns across slit
 - Flare: different densities
 - Features in mask corners, at field edges

- Mask has dark image border, which reduces (but not eliminates) die-die interaction

- Mask exposed on NXE:3300 in DEMO at ASML VHV

- Model calibration data collected on Hitachi CG-5000 using automated recipe setup
OPC MODEL CALIBRATION ON NXE:3300
N10, N7 METAL AND VIA LAYERS

- ASML-Brion Tachyon NXE model captures EUV specific effects
 - Shadowing: patterns across slit
 - Flare: flare map accurately models CD evolution near field edge due to die-die interaction
 - Final rms total model errors of 0.6-1.0nm

Matching of experimental and modeled CD slit signature

Flare map, including die-die interaction

Model accuracy at field edge <± 0.5 nm
193I TO EUV COMPARISON FOR N10/N7
METAL 1 LAYER

- First EUV exposure done of corrected Metal mask after OPC – NXE:3300

193i: LE3
EUV single exposure

193i 3LE route – corner rounding is challenging
EUV single patterning offers clearly better patterning fidelity than 193i 3 LE
NXE:3300 MONITOR MASK
ABSORBER WIDTH UNIFORMITY ON MASK

Mask intrafield CD uniformity for 22nm LS at <2nm 3s at 4x
NXE:3300 PROCESS SETUP TEST ON NXE:3100
22NM LS PROCESS CD UNIFORMITY

- NXE:3300 Process setup on TEL Lithius Pro-Z – exposure on NXE:3100
- 3100 monitor mask vs. 3300 monitor mask with etched ML border
- Conditions
 - Dipole 60-X illumination
 - Full wafer and full field exposure
 - CD measured in 3 x 5 field positions, including field edges
 - Raw data reported – no corrections applied

Smaller intrafield CD signature is consistent with improved mask quality

NXE:3100 mask
Total 1.86nm 3s
Intrafield 1.70nm 3s
Intrafield subtracted 0.89nm 3s

NXE:3300 mask
Total 1.27nm 3s
Intrafield 0.99nm 3s
Intrafield subtracted 0.83nm 3s
NXE:3300 PROCESS SETUP TEST ON NXE:3100 PROCESS DEFECTIVITY IMPROVEMENT

- NXE:3300 Process setup on TEL Lithius Pro-Z
- Improved resist dispense system reduces coating particles post etch compared to conventional dispense – defects classified as coating defects after review are below

![Graph showing normalized defect comparison between POR and improved resist dispense system]

- Normalized defect comparison:
 - POR: 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0
 - Improved resist dispense system: 54% Reduction post etch
 - 21% Reduction post litho

- Chart shows improved resist dispense system reduces coating particles and post etch defect density compared to conventional dispense

![Images of ADI and AEI defects]

P-PE-01: Impact of novel defect reduction hardware on EUV patterning Defectivity (Yuhai Kuwahara – TEL)
NXE:3300 Mask Performance Validation Across Slit CD Variation

- NXE:3300 exposure
- Mask 3D effect causes pupil non-telecentricity, leading to pattern-dependent placement error through focus
- Measured pattern placement error through focus
- Detailed modeling, including mask stack model can match experiment
 - SLitho-EUV (Synopsys)
- Effect is small for standard EUV mask stack (1nm placement for 100nm defocus)
- New mask technologies can further reduce these effects

Session XI: Alternative EUV Mask Technology for Mask 3D Effect Compensation

Lieve Van Look
CONTENTS

Introduction
NXE: 3100
NXE: 3300
Conclusions
CONCLUSIONS

<table>
<thead>
<tr>
<th>NXE:3100</th>
<th></th>
</tr>
</thead>
</table>
| **Throughput** | More than 9000 wafers exposed (3 years)
Source collector mirror influences power level
~6-9 months collector mirror lifetime |
| **Resists** | CAR *not* reaching targets for LWR\Dose tradeoff
CAR enablement needs to confirm good performance
Inorganic materials will need time to mature |
| **Masks** | Good progress in mask FS particle adders
Mask frontside cleaning up to 100x – no CD impact |

<table>
<thead>
<tr>
<th>NXE:3300</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>Expect 30 wph in Q1 2015</td>
</tr>
<tr>
<td>Process</td>
<td>TEL Lithius Pro-Z track ready, resists selected</td>
</tr>
<tr>
<td>Mask</td>
<td>First OPC model calibration, mask fabrication exercises completed – N10 masks available</td>
</tr>
</tbody>
</table>
Thank you for your attention