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Motivation for research
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Cho et al., EUVL & Litho extensions, 2009.

Brainard et al.

« Can we design new materials to overcome the
triangle of death to simultaneously improve RLS?
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Our approaches

1. Achieving sub-10 nm resolution

Top down
Top down Bottm up + bottom up
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Polystyrene-block-Polylactic acid (PS-b-PLA)
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* High x parameter — 0.217
— 5 nm features reported (bulk)
— PS-b-PMMA, 0.041

« Synthesis by ‘living’ polymerisation
— Can control feature size/morphology p
— 7.9 — 14 nm domains (hp)

* Have detailed understanding of

interfacial properties
Keen, ... Blakey et al., Langmuir, 2012, 28, 15876.

Side view
Neutral substrate

Side view




Directed Self Assembly - Graphoepitaxy

DSA with PS-b-PLA
* Resist freezing not
required

« Can be spin
coated from a
non-solvent for

PHOST based
resists
e T ~100 °C

Anneal
(< most resists)

 Etch selectivity for
PS to PLAis 1:4



Uniformity of Coverage (2 L,

BCP coverage for 48.3 nm CD lines 21 k PS-b- PDLA
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photoresist

photoresist

CD Shrink: 48 - 12 nm (75%)
Excellent BCP coverage

30% reduction in LER observed




Effect of additives

* Doping additives to PS-b-PMMA
— Can we increase the y parameter of
BCPs? o -

— Can we tune L, / commensurability? 2 year PhD Student

(project currently

— Can we tune morphology? not industry funded)

— Potential advantages include:

« Use currently available BCPs
— Shallower learning curve?
— Less need for more polymer synthesis
— Reduced defectivity?



Can additives be used to influence y?

No additive 5% additive
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« Addition of additives (5 volume %) induced order in a disordered
PS-b-PMMA (10k-b-10k)

* v has effectively been increased!

» Effect observed as low as 5k-b-5k = y at least tripled



Morphology of BCPs can also be tuned
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Works for Thin Films - L, Tuning
25% additive

I— 100nm JEOL 08/11/2012 I— 100nm JEOL 08/11/2012
x100,000 2.00kV UED GB WD 2.4mm 11:09:13 x100,000 1.00kV UED GB WD 2.3mm 11:43:13

L, =36.2 nm L, =40.7 nm

Same neutral surface was used in both cases

Will tuning of L, result in less defects?
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Gen 1- Charge Directed Self Assembly

Ya-Mi Chuang

(1) @W (2) 3)
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1) Sidewalls of CAR resists are typically negatively charged.

2) Allows attachment of positively charged block copolymers.

3) Annealing at temperatures above T, of non-charged block allows
polymer to re-arrange to minimize surface tension and reduce LER.




Block Copolymers / Solution Properties
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Zeta potential measurements
of polymer solutions reveal
particles are positively
charged below pH 8

TEM

L

Block copolymer was
found to self assemble
into vesicles in aqueous

solution (~18 nm)




Healing of Patterned Features

Control

Trench 174 £ 5 nm
LER 5.8+ 0.4 nm

i Control
1e-3 ¢ Control, A
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| L o Treated, A
Treated @ + A 1e-4 NP
Trench 160 £ 1 nm 1e+0 1e+1 1e+2
LER 3.4 + 0.3 nm Spatial frequency (um™)
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Charge Directed Self Assembly — Gen 2

Ya-Mi Chuang

v @ W

 Particle size of Gen 1 materials was 20 nm and flattened to

40 - 50 nm on surfaces
« To overcome this Gen 2 BCPs were designed to be double

hydrophilic — No aggregation




Synthesis of Double Hydrophilic BCPs
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Use controlled polymerization (RAFT) so get
controlled size (M,) and dispersity of size (PDI).




Characterisation

Composition and Size Glass Transition Temp
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Series has a diverse range of compositions, molecular weights
and glass transition temperatures




Evidence for Adhesion to Surfaces

AFM VUV-VASE
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 AFM — change in morphology consistent with adhesion
« VUV-VASE - increase in thickness demonstrates adhesion

* Inherent roughness of BCP on flat substrate ranged from
RMS 0.24 — 0.93 nm (30 LER equivalent 0.72 — 2.8 nm)




Prabhu et al., Adv Mater, 2010 AO A1 A2 A3 A4 A5 A6 A7 A8 AOA10A11A12A13

* Planar rough surface - PHOST resist



A0 A1 A2 A3 A4 A5 A6 A7 ABA9AT0A11A12A13

* Planar rough surface - PHOST resist

 Homopolymer of charged block and BCPs
with a large charged block performed poorly
In healing studies.



Healing of EBL patterns

control BCP treated
[ (i) control
I (i) Experiment
(nm) 4
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H
100 nm
% Healing vs Tg

0.30
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Patterned open source PHOST resist
Trend differs from planar rough surfaces

Weak correlation with Tg of BCP, other
D factors could also contribute.
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% of healing on the patterns




Healing EUVL printed features

Control : | BCP Treated
PHOST resist .

LER reduced 34 %

CD 38.9%+0.4 nm CD 46.7 £ 0.4 nm
LER 6.1 £0.3 nm LER 4.0+ 0.2 nm

EUVL Patterned Resist — Thanks to Michael Leeson @ Intel. PHOST based resist




Low frequency LER reduced
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Healing EUVL printed features

Control
PHOST reS|st

BCP Treated
A3

CD mcreased is this a general feature?

LER reduced 34 %
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CD 38.9%+0.4 nm CD 46.7 £ 0.4 nm
LER 6.1 £0.3 nm LER 4.0+ 0.2 nm

EUVL Patterned Resist — Thanks to Michael Leeson @ Intel. PHOST based resist




Overdosed patterns have >ACD after BCP treatment

« CD change during
BCP treatment
seems to be
correlated to degree
of overdose for the
line space patterns

d Perhaps due to Difference of control CD from target (nm)
sidewall charge?? <

.

CD change after BCP treatment (nm
N

10

Increasing ACD

-4 12 10 8 6 4 -2 0 2

Increasing overdose



Results from another EUV resist

LER reduced 28 %

_— 100nm JEOL 14/02/2013
:14:

2.0 2.1lmm 10:14:48

CD=42.2+0.3 nm
LER=6.9+0.2 nm
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« Graphoepitaxy DSA — PS-b-PLA
— No freezing required (coated from non solvent / T, .., < T, resist v
— Oriented Line-spaces (lamella) < 10 nm hp v
— Additives able to increase y of PS-b-PMMA and tune morphology as well
as Ly/pitch v
 Gen 1 Charge directed self assembly - Amphiphilic BCPs
— 41 % healing give 30 LER of 3.4 nm v
— Large particle size (18 nm) x
* Gen 2 Charge directed self assembly - Hydrophilic BCPs
— 34 % healing to give 30 LER of 3.7 nm v
— Good understanding of factors to optimise to improve healing v

— No aggregation (particle sizes < 10 nm) — suitable for healing small
features v




PS-PLA and LER healing
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