IMPACT OF MASK STACK ON HIGH NA EUV IMAGING

VICKY PHILIPSEN, ERIC HENDRICKX, RIK JONCKHEERE, GEERT VANDENBERGHE (IMEC)

NATALIA DAVYDOVA, TIMON FLIervoET (ASML)

JENS TIMO NEUMANN (ZEISS)
INTRODUCTION

Increasing NA beyond 0.33 at reduction ratio 4X

• Angular range at mask side increases

Impact on
• Reflectivity (multilayer and absorber)
• Diffraction (intensity and phase)
• Imaging (contrast and pattern shift through focus)

Can mask stack tuning help?

ML = MultiLayer
CRA = Chief-Ray Angle
INTRODUCTION

Increasing NA beyond 0.33 at reduction ratio 4X

• Rigorous lithography simulations assess impact of high NA on EUV imaging
• Good description of 3D mask stack in simulator required
• Benchmark to current mask stack through experimental validation
In this presentation: Reduction ratio is always 4X
EXPERIMENTAL ML REFLECTIVITY THROUGH WAVELENGTH AND INCIDENCE ANGLE

- ML reflectivity measured in clear areas of 5x5mm² on 51nm Ta-based mask
- at LBNL reflectometer beamline for EUV

- Uniform over NA0.33
- Experimental peak ML Reflectivity below 0.65

- Current ML blank has good reflection control for NA up to 0.33
ML DEFINITION IN SIMULATOR
FITTED TO EXPERIMENT AS ML WITH INTERMIXING

- In simulator we assumed until now ML consisting of 40 repetitions of Si/Mo layer with perfect interface
- From literature* we know intermixing at the interfaces will occur
- Experimental reflectometry as input for fitting mask ML in simulator

Definition in simulator = ML with intermixing
- fitted to mimic experimental measurement on ML blank

* Seo et al., SPIE2007
OUTLINE

▸ ML definition
 - Reflectometry on current EUV mask

▸ Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask

▸ Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging

▸ Summary & Conclusion
MASK ABSORBER REFLECTIVITY THROUGH WAVELENGTH AND INCIDENCE ANGLE

- **Absorber** reflectivity measured on 51 nm Ta-based mask
- at LBNL reflectometer beamline for EUV

- Absorber definition in simulator using CXRO n&k is good starting point
- Absorber definition in simulator can be fitted to experimental reflectivity by thickness and n&k fitting
OUTLINE

▸ ML definition
 - Reflectometry on current EUV mask

▸ Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask

▸ Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging

▸ Summary & Conclusion
DIFFRACTOMETRY MASK

- Mask has 51nm Ta-based absorber
- Diffractometry L/S gratings

Mask topdown SEM images

40nm 1:1 (at mask)
i.e., 10nm LS at 1X

44nm 1:1 (at mask)
i.e., 11nm LS at 1X

52nm 1:1 (at mask)
i.e., 13nm LS at 1X

• Mask CD measurements from top-down CD SEM well documented

• Resolution down to 10nm hp (1X) over full field!
DIFFRACTOMETRY
SPECTRA OF 1:1 HORIZONTAL LS

“1:1” LS - **Horizontal** orientation only
Beam incident perpendicular on grating

- 0^{th} order decreases with increasing pitch
- -1^{st} order drops with decreasing pitch \Rightarrow absorber shadowing effect
DIFFRACTION SIMULATION
IMPACT OF SPACE WIDTH FOR 54NM PITCH

Zeroth order increases with decreasing mask line width
Horizontal orientation suffers from shadowing

- Zeroth order increases with decreasing mask line width
- Horizontal orientation suffers from shadowing
Severe shadowing (i.e., 3D mask effect) for small pitches:
- Vertical orientation: both first orders are impacted
- Horizontal orientation: minus first order gets blocked
Simulated diffraction (using fitted mask stack definition) needs only one fixed CD-offset for all mask line widths to get good correlation with experimental diffraction.

- Fitted mask stack definition in simulator allows interpretation of experimental diffractometry.
- Patterned absorber at small spaces is responsible for imbalanced diffraction pupil → causing asymmetric shadowing and pattern shift through focus.
OUTLINE

- ML definition
 - Reflectometry on current EUV mask

- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask

- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging

- Summary & Conclusion
IMAGING SIMULATION AT NA0.45 4X
CURRENT ML INDUCES IMBALANCE

- Increasing NA and CRA increases angular range on mask
- ML reflectivity:

- Current ML: sharp reflectivity drop beyond 12° incidence angle is captured by NA0.45 ⇒ causing diffraction imbalance

- Compensate reflectivity by adjusting periodicity by ML factor
ML TUNING
FOR UNIFORM REFLECTIVITY WITHIN NA0.45

EUV ML reflectivity within NA0.45 at CRA 8deg 4X

• Bi-stack can give uniform reflectivity through large angles
ML IMPACT ON IMAGING AT NA0.45
PATTERN SHIFT THROUGH FOCUS

L/S imaging through pitch: Dipole90° σ0.74/1
at NA0.45 CRA 8° 4X reduction

- Pattern shift through focus can be reduced by tuning ML, but significant pattern shift remains in small-pitch region.
ML IMPACT ON IMAGING AT NA0.45
PUPIL FILLING

L/S imaging through pitch: Dipole90° σ0.74/1 at NA0.45 CRA 8° 4X reduction

Pupil filling for 11nm L/S at NA0.45:

- **mono-stack**
 - ML factor 1
 - Current ML

- **mono-stack**
 - ML factor 1.008

- **bi-stack**
 - 20 layers in each stack

• Imbalance in diffraction pupil remains after ML tuning
 → Absorber impact at high angles, as shown by diffractometry
Pattern shift through focus can be further reduced by tuned ML and thinner absorber, but not to acceptable level.

→ large angles at mask remain issue in small-pitch region
ABSORBER & ML IMPACT
UNDERSTANDING AT SMALL PITCH

Geometrical visualisation at small pitch

MLfactor 1

70nm Ta-absorber

MLfactor 1.008

44nm Ta-absorber

Pupil filling for 11 nm L/S at NA0.45 CRA 8° 4X reduction:

imbalance reduced

• Combined ML and absorber tuning helps reducing EUV-specific issues such as pattern shift through focus,

but strong mask effects remain in small-pitch region due to large angles.
OUTLINE

▸ ML definition
 - Reflectometry on current EUV mask

▸ Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask

▸ Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging

▸ Summary & Conclusion
SUMMARY & CONCLUSION

Experimental assessment of current mask stack

- Fitting of mask stack (ML + absorber) in simulator to actual mask performance
 - based on reflectometry and diffractometry measurements
- **Experimental validation** of patterned absorber impact on diffraction and predicted by simulation

Imaging simulation at NA0.45 CRA8° 4X reduction

- **No solution** found yet that balances imaging performance due to complex interplay of large angles and mask stack (ML and absorber)

Outlook for high NA EUV

- **Reduce mask effects** (smaller range of incidence angles on mask) by
 - CRA ≤ 7° cf. previous talk of JT Neumann (Zeiss)
 - higher Reduction ratio
- Explore other tuning options
 - illumination tuning
“Thank you” to
Rudi De Ruyter, Darko Trivkovic at imec
DNP
Eric Gullikson at LBNL
Uli Klostermann, Weimin Gao at Synopsys