Oct. 4, 2012

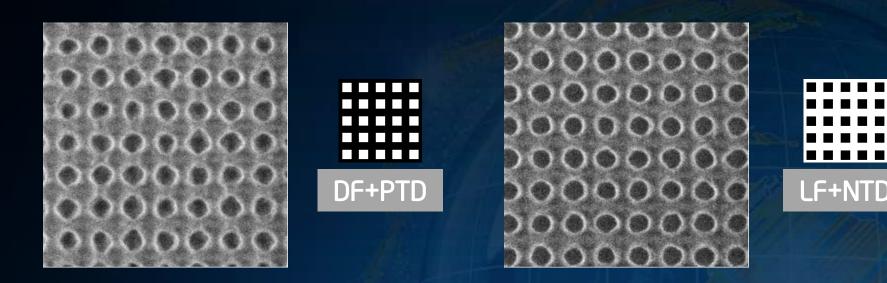
A Comparison of Positive- and Negative-tone Contact Hole Process Flows Using the IMEC NXE:3100

Todd R. Younkin, Gustaf Winroth, & Roel Gronheid

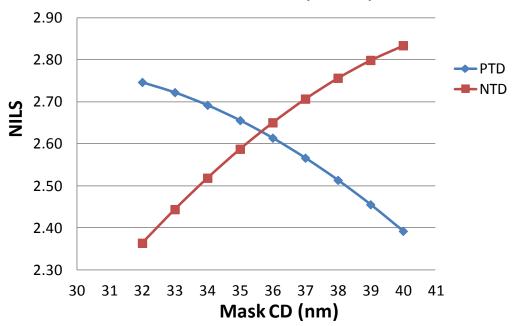
- Introduction & Motivation igodot
 - Why NTD Resists for EUVL?
 - Graphoepitaxial Directed Self Assembly (DSA) for C/H Shrink Using a Blended Material
 - Process Flows We Are Comparing
 - 193i NTD + DSA Shrink Results at IMEC
- NTD Resist Performance on the IMEC NXE3100 :: Recent Progress to 30P60.
- DSA Blended Shrink for NTD :: ~10-35% Improvement vs. NTD Alone. ullet
- Best Results To Date :: PTD Still the Champion, but Alternatives Quickly Maturing. ullet
- **Conclusions & Next Steps** ullet
 - Acknowledgements
 - Personal Recommendation for Best Belgian Chocolate

Introduction & Motivation

- NTD Resist Performance on the IMEC NXE3100
- DSA Blended Shrink for NTD
- Best Results To Date
- Conclusions & Next Steps



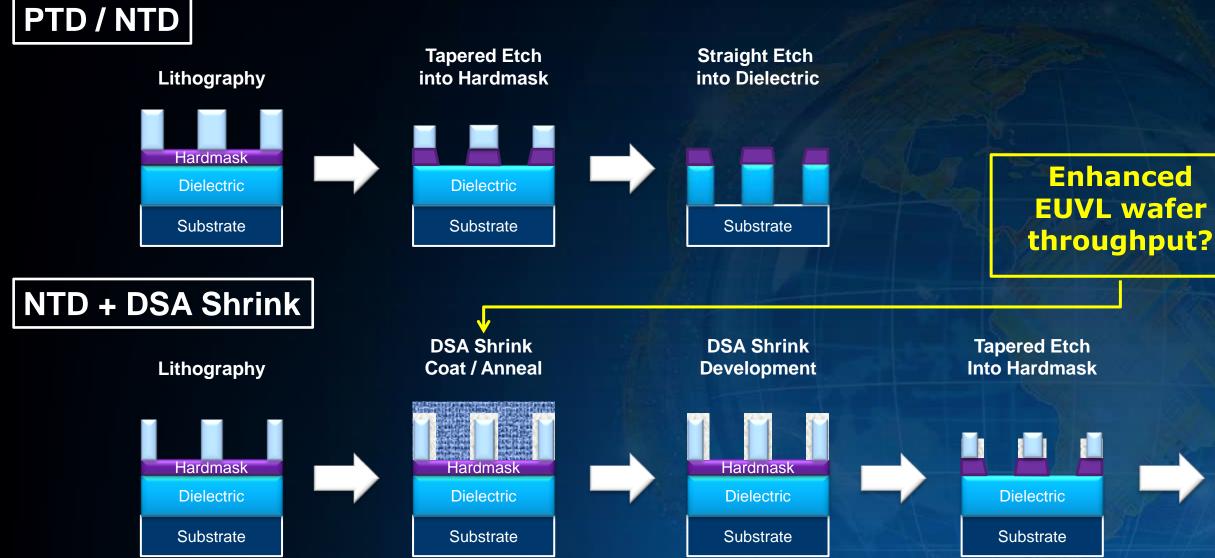
NTD Helped ArF Solve LCDU Issues


mec

Over-exposing dots improves NILS in ArF, resulting in improved LCDU. \bullet

Can we over-expose dots in EUV to increase NILS? YES.

- Potential benefit : Use more photons/hole; Improves shot noise. ullet
- Absolute flare will be higher; But flare variation should decrease. \bullet
- Optimization yields material sets which are complementary to latest ullet193i NTD layers and are beneficial to several DSA flows.



NXE3100, Conv., Pitch = 64 nm

R. Gronheid et al. SPIE 2012, 83220M

Process Flows Of Interest Here

> EUVL graphoepitaxy flow requires solvent-compatible pre-pattern. Primary path is an NTD EUVL resist with the appropriate thermal and chemical performance.

imec

Straight Etch into Dielectric

193i + DSA Blended Shrink :: IMEC Integrated Efforts

	Litho	+DSA Blend	Hardmask Etch	Dielectric Etch
Image (Top-Down @ 200k)				
CD (nm)	~ 55	~ 35 (~36% ↓)	~ 35	~ 25

- In parallel to the EUV work presented here, we are using a 193i NTD process to fabricate an IMEC electrical \bullet test vehicle for the direct comparison of standard patterning processes to variants which employ DSA.
- Results from our 193i NTD + DSA blended shrink flow (55% integrated shrink) are illustrated above. ullet
- Can we extend similar integration schemes to NXE-patterned wafers?

mec

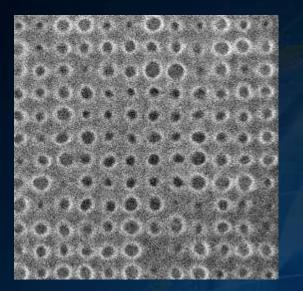
If so, can we improve EUVL resolution, CDU, and / or wafer throughput?

XSEM Following **Dielectric Etch**

R 7.0kV 5.0mm x200k LA0(U) 9/26/2012

(~55% ↓)

Lithography = ASML 1950i, NTD Resist + Develop DSA = Blended Shrink, Anneal + Develop


7

- Introduction & Motivation
- ►NTD Resist Performance on the IMEC NXE3100
- DSA Blended Shrink for NTD
- Best Results To Date
- Conclusions & Next Steps

Feb'12 - NTD Performance on IMEC NXE3100

PTD 14.0 mJ/cm² Hole 36P64 @ mask

mec

Gen-1 4.0 mJ/cm^2 Dot 36P64 @ mask

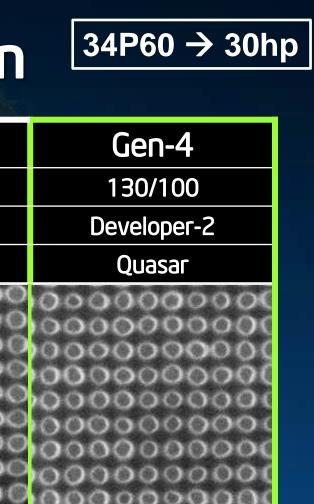
.....

Gen-2 15.4 mJ/cm² Dot 44P64 @ mask

- As material performance improves, we want to be cognizant of how the new material sets. compare to positive-tone EUVL champion materials.
- In Feb'12, we expected further improvements via a combination of new material design as well. as process improvements.
- NILS is meeting initial expectations. Further mask / modeling studies are required to refine our ulletunderstanding.

R. Gronheid et al. SPIE 2012, 83220M

NXE3100 32 nm hp

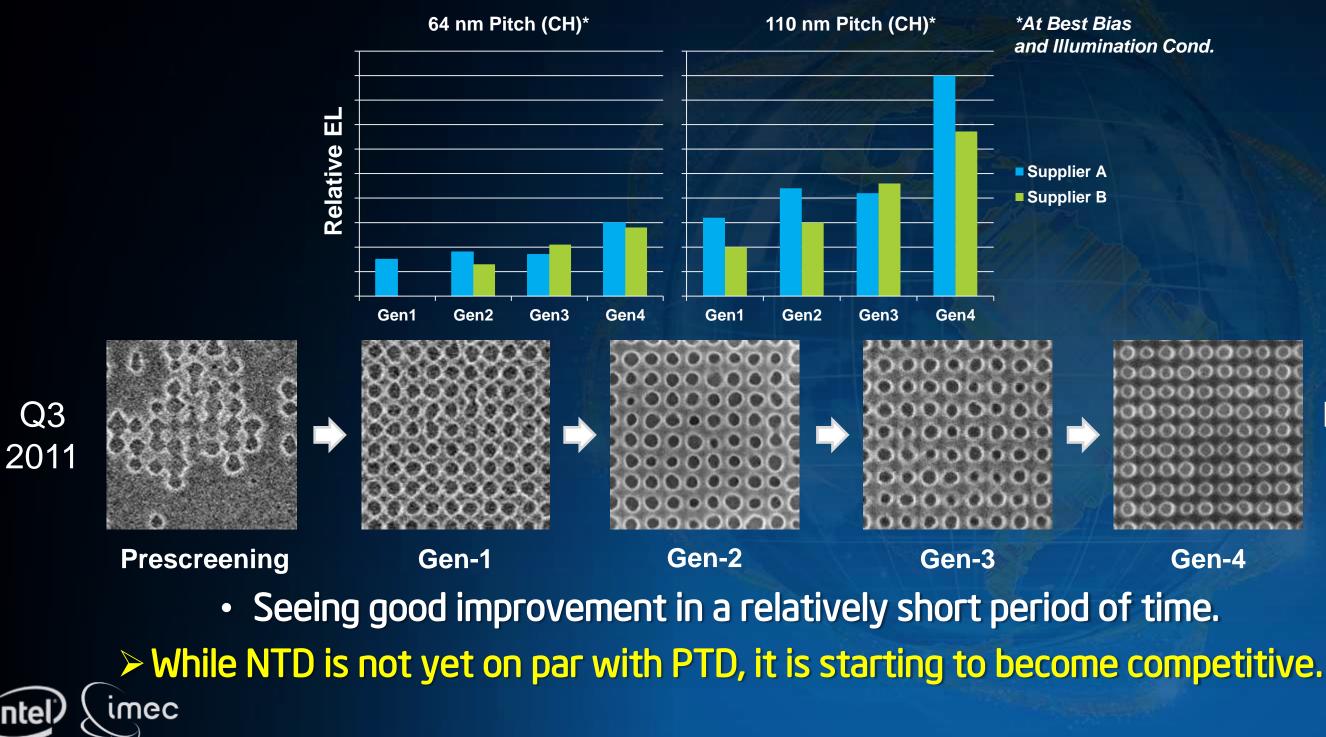

IMEC NXE Latest NTD Optimization

Resist	Gen-3	Gen-4	Gen-4	Gen-3
PAB/PEB	130/100	130/100	130/120	130/100
NTD Developer	Developer-1	Developer-2	Developer-2	Developer-1
NXE Illumination	Conventional	Conventional	Conventional	Quasar
Image (Top-Down @ 230k)				
Esize (mJ/cm2)	17.0	20.8	10.8	15.8
CD (nm)	27.6	30.3	29.4	30.7
3 Sigma (nm)	4.9*	6.1	7.6*	5.3*

Gen-4 platform showing reduced occurrence of missing contact holes. •

Best NTD Performance To Date Comes From Gen-4 Resist, Developer-2, & Quasar Illumination.

imec


20.8

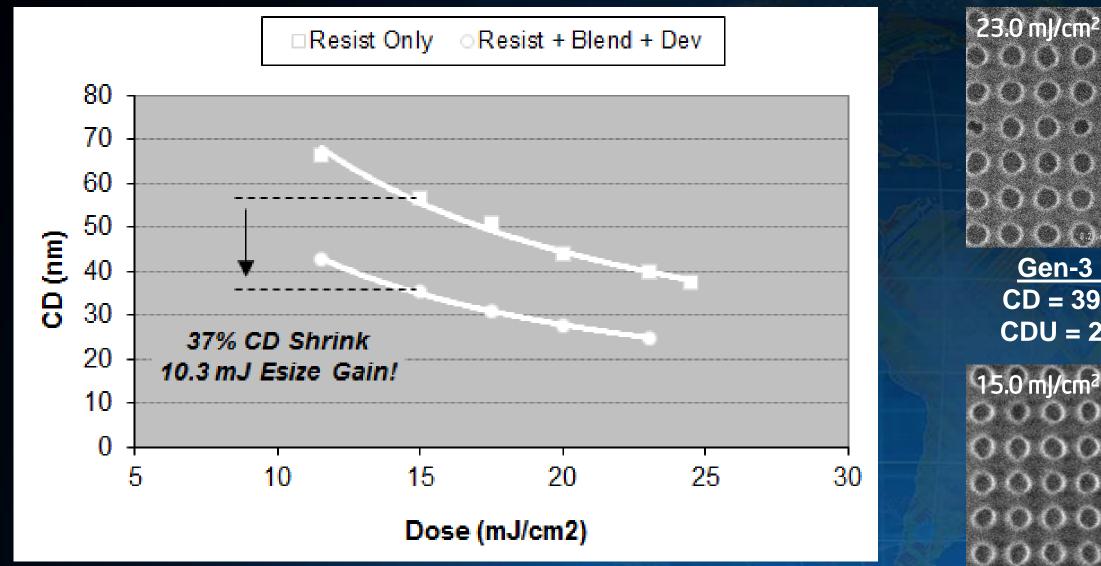
27.2

3.2

* Missing holes observed

Noteworthy Improvement Across Supplier Base

Present Day



- Introduction & Motivation
- NTD Resist Performance on the IMEC NXE3100
 DSA Blended Shrink for NTD
- Best Results To Date
- Conclusions & Next Steps

Use DSA Shrink As E-size Enhancement?

Rev0 proof of concept demonstrated. ullet

imec

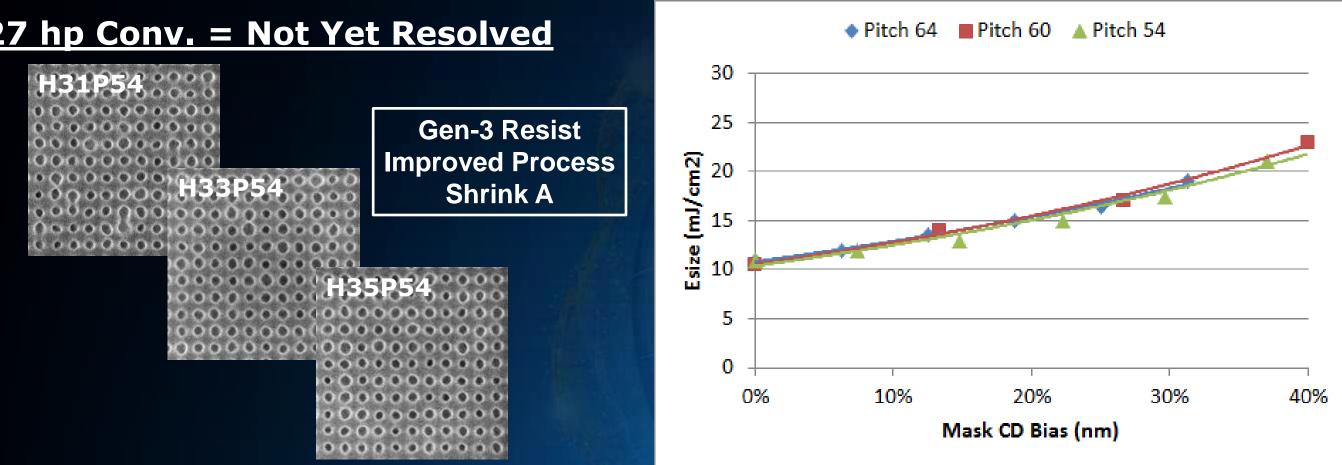
Possible throughput gain (~35% vs. NTD scheme).

Gen-3 NTD + Shrink-A CD = 35.6 nmCDU = 2.2 nm

Gen-3 NTD CD = 39.9 nm CDU = 2.2 nm

DSA Shrink Behavior Through Dose / CD

Dose	11.5	15.0	17.5	20.0	23.0	24.5
EUVL NTD Resist Only						
CD	66.6	56.6	50.9	44.1	39.9	37.3
3Sig	3.98	3.53	2.94	2.52	2.21	2.04
+ DSA Blend and Dev					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
CD	42.6	35.6	30.9	27.5	25.0	ND
3Sig	ND	2.23	1.70	1.26	0.94	ND
CD ∆ (nm)	24.0	21.0	20.0	16.6	14.9	ND
CD (%)	36%	37%	39%	38%	37%	ND
3s ∆ (nm) 3s ∆ (%)	ND ND	1.3 37%	1.2 42%	1.3 50%	1.3 57%	ND ND


 DSA blended agent requires closed pre-pattern and saturates ~ 25-30 nm. May be used (instead) as CDU enhancement? Metrology / understanding = I/P imec

48P80 → 40hp **Gen-3 Resist Shrink A**

Performance of DSA Shrink vs. Mask Bias

27 hp Conv. = Not Yet Resolved

imec

- Today, target features are 34P60 38P60 by conventional or guasar illumination.
 - Continued optimization will likely yield 27 hp resolution with Esize < 20 mJ/cm²

Ideal bias for NTD and NTD+DSA process is ~13 - 30 %

Key Parameter = DSA Shrink Agent FT

38P60 → 30hp

NTD Resist	Gen-3	Gen-3	Gen-3	G
Shrink	None	Shrink A, Std FT	Shrink A, FT+	Shrin
Image				
Esize (mJ/cm2)	23.5	20.8 (11 %)	20.4 (13 %)	17.0
CD (nm)	32.5	30.2	29.2	i
CDU (nm)	1.4*	1.3*	1.3	

* Missing holes observed; Believed to arise from NTD pre-pattern

Optimization = Shrink FT > Resist FT >> Resist Anneal > Shrink Anneal ulletProcess optimization yielded ~10-25% Esize Gain at 30 hp vs. NTD imec

1.0

.0 (27 %) 27.3

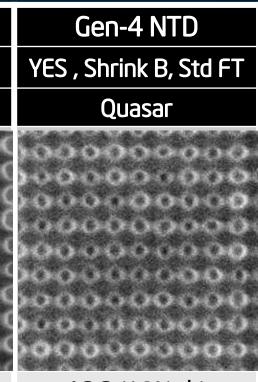
ien-3 k A. FT++

- Introduction & Motivation
- NTD Resist Performance on the IMEC NXE3100
- DSA Blended Shrink for NTD
- Best Results To Date
- Conclusions & Next Steps

Comparison of Champion Results

Resist	PTD	Gen-3 NTD	Gen-3 NTD	Gen-4 NTD
Shrink	NO	NO	YES , Shrink A, Std FT	NO
NXE Illumination	Conventional	Quasar	Quasar	Quasar
Image (Top-Down @ 230k; 2 nd Image @ 300k)				
Esize (mJ/cm2)	17.0	15.8	14.4 (9 % ↓)	20.8
CD (nm)	30.4	30.7	24.7	27.2
Normalized Exposure Time	1.00	1.65	1.55 (6 % 🗸)	1.90

• Move from Gen-3 to Gen-4 resist platform decreased missing C/H rate (but increased Esize).


imec

'intel)

• DSA Blend agent does not increase missing hole rate when target CD > 20-25 nm.

Champion EUVL Process Remains Positive Tone Resist.

18.3 (12% ↓) 27.6

1.75 (8 % 🗸)

ncreased Esize). 20-25 nm. Sist.

Summary

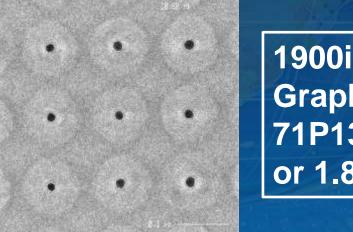
- NTD resists have recently realized good progress to 30P60.
- Ideal bias for NTD (as well as NTD+DSA process) is ~13 30 %
- Best NTD performance to date comes from Gen-4 resist, developer-2, and NXE3100 Quasar illumination.
- Novel DSA blended shrink agents can provide ~10-35% improvement vs. NTD alone.
- DSA optimization = Shrink FT > Resist FT >> Resist Anneal > Shrink Anneal.
- Using 193i, we have illustrated a 55% integrated shrink following dielectric etch using a similar blended DSA shrink agent.

 \succ While our best results to date show that PTD is still the primary EUVL solution, alternative options are guickly maturing.

Next Steps

> NTD Resist

- Understand NTD outgassing & WP contamination rate. (& Improve...)
- Correlate mask measurements to design and wafer level observations.
- Use stochastic resist model to understand potential areas for material and / or process improvement.
- Once resolution of NTD resist(s) warrants it, use OAI to push patterning limits.


DSA Shrink Agent

nec

- Validate pattern transfer for EUVL-patterned + DSA blended shrink wafers.
- Understand how material or process optimization can push to CDs < 20-25 nm or 2-5 beard seconds[#].

IMEC DSA Electrical Test Vehicle

- SPIE'13 :: Use IMEC e-test vehicle to evaluate process flows having blended DSA agent to those using a block copolymer (BCP).

Graphoepitaxy 71P130 → 18P130 or 1.8 beard seconds

Acknowledgements

TEL (Tokyo Electron Ltd.)

Mark Somervell Kathleen Nafus Ainhoa Romo-Negreira Koichi Matsunaga

IMEC

Paulina Rincon Delgadillo Frieda Van Roey Boon Teik Chan Nadia Vandenbroeck Vincent Truffert Philippe Foubert

IMEC Material Support

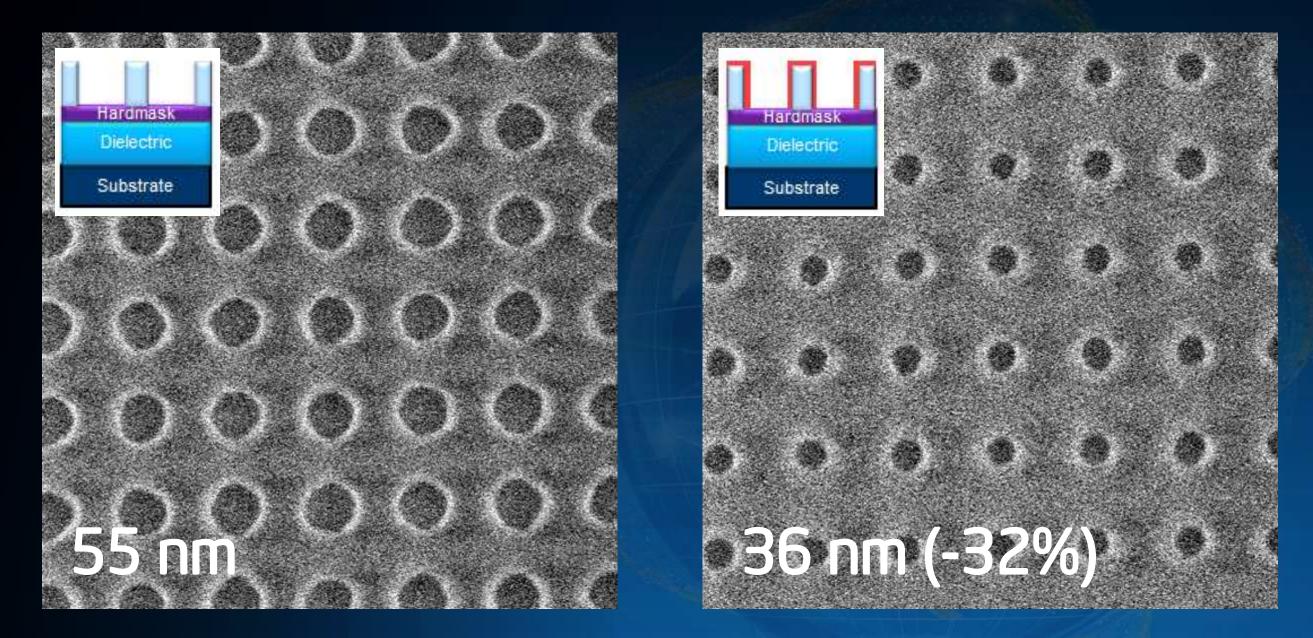
AZ Electronic Materials Brewer Science, Inc. **Fujifilm Holdings Corporation JSR** Corporation Nissan Chemical TOK (Tokyo Ohka Kogyo Col, LTD)

Best Belgian Chocolate

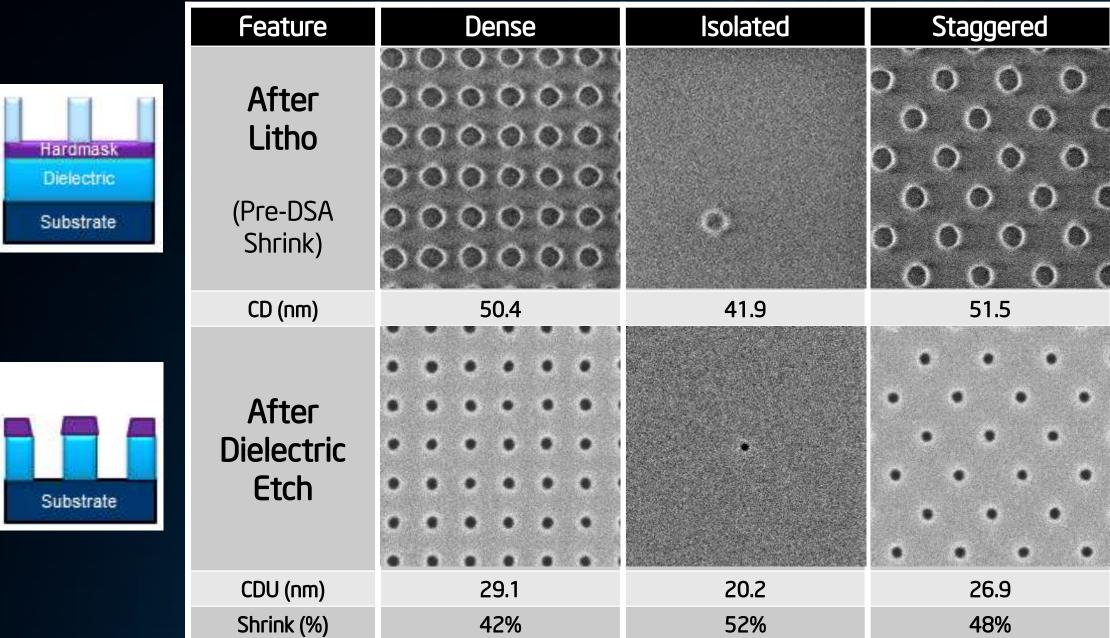
≻Mary's Furtive!

Fresh vanilla cream dusted with speculoos

- Mary's (<u>www.mary.be</u>) is located in the Galerie de la Reine (Glass Gallery near the Grand Place) ::
 - 36 Galerie de la Reine, 1000 Brussels



Thank You, Merci, & Dank U!


193i + DSA Shrink :: IMEC Integrated Efforts

Representative performance of DSA shrink agent for 55P110 on IMEC 1950i.

imec

193i + DSA Shrink :: IMEC Integrated Efforts

Characterizing a variety of features to understand iso-nested performance for DSA blended shrink process.

imec