Novel EUV Resist Materials and Process for 16 nm Half Pitch and Beyond

Ken Maruyama1, Yoshi Hishiro1, Ryu Imoto2, Makoto Shimizu2, and Tooru Kimura2

1JSR Micro Inc, 2JSR Corporation
Contents

- Challenge for EUV Resist & JSR approaches
- Development of new materials and process for Resolution, LER and Sensitivity (RLS) improvement
- Combination of materials and process
- Sub 22 nm CH patterning with EUV lithography and Directed Self-assembly (DSA) process
- Summary
Challenge for EUV Resist

The most difficult technical requirement is simultaneous improvement in resolution, LWR, and sensitivity (RLS).
JSR Approach for EUV Resist RLS Improvement

Resist Materials
- Short acid diffusion length PAG
- High Tg resin
- High absorption resin

Related Materials
- Under-layer
- Top-coat

Process
- Rinse agent
- DSA

➢ EUV Resist RLS improvement with combination of materials and process
EUV Resist RLS Improvement
-Resist Materials-

Resist Materials
- Short acid diffusion length PAG
- High Tg resin
- High absorption resin

Related Materials
- Under-layer
- Top-coat

Process
- Rinse agent
- DSA
RLS Improvement: Resist Materials

<table>
<thead>
<tr>
<th>Short acid diffusion length PAG</th>
<th>High Tg resin</th>
<th>High absorption resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid diffusion control</td>
<td>Acid diffusion control</td>
<td>High acid yield</td>
</tr>
<tr>
<td>LWR & Resolution</td>
<td>LWR & Resolution</td>
<td>Sensitivity</td>
</tr>
</tbody>
</table>

- Improvement of RLS performance of resist with short acid diffusion length PAG was demonstrated
- Effect of resin glass transition temperature (Tg) and absorption was investigated in detail

Figure: Elemental absorption cross-sections at 13.4 nm wavelength. Elements commonly found in photoresist materials are H, C, N, O, F, and S.

P. Dentinger et al.

Effect of Tg on LER

Comparison of Tg Results

- In general, LER gets worse at higher Tg.
- Since Tg is a function of thickness, this may partially explain LER degradation.
- As Tg increases, the φ for 36-nm lines improves while the φ for 50 nm lines gets worse.

Brian Cardineau et al. 2011 International Symposium on EUVL

➢ JSR started to develop resin with higher Tg to understand the effect on LWR
Development of High Tg Resin

<table>
<thead>
<tr>
<th>Resin Composition</th>
<th>Std. resin</th>
<th>High Tg resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesion unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protecting group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Tg unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tg (°C)</th>
<th>Std.</th>
<th>Std. + 20 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid diffusion length (Relative value)</td>
<td>100</td>
<td>60</td>
</tr>
</tbody>
</table>

- **High Tg EUV resin was prepared by incorporating high Tg monomer unit into standard resin**
 - Tg increased by 20 C by adding high Tg monomer to std. resin
 - Acid diffusion length become short by 40% by applying high Tg resin.
Resin Tg Impact on RLS Performance

<table>
<thead>
<tr>
<th>Resist</th>
<th>Resist A</th>
<th>Resist B</th>
<th>Resist B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin Tg (°C)</td>
<td>Std</td>
<td>Std + 20</td>
<td>Std + 20</td>
</tr>
<tr>
<td>PEB</td>
<td>Std</td>
<td>Std</td>
<td>High</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>16.7 mJ/cm²</td>
<td>18.6 mJ/cm²</td>
<td>15.4 mJ/cm²</td>
</tr>
<tr>
<td>LWR</td>
<td>6.2 nm</td>
<td>4.6 nm</td>
<td>5.0 nm</td>
</tr>
<tr>
<td>Z-factor</td>
<td>5.68E-08</td>
<td>3.56E-08</td>
<td>3.32E-08</td>
</tr>
</tbody>
</table>

26 nm hp

- Resist with high Tg resin shows good LWR than std resist
- Combination of high Tg resin and high PEB improved RLS performance
Resin including high absorption atom was developed to improve sensitivity

Figure 1: Elemental absorption cross-sections at 13.4 nm wavelength. Elements commonly found in photoresist materials are H, C, N, O, F, and S.

Development of High Absorption Resin

<table>
<thead>
<tr>
<th>EUV Resist with Std Resin</th>
<th>HP</th>
<th>22 nm HP</th>
<th>20 nm HP</th>
<th>19 nm HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td></td>
<td>17.2mJ/cm²</td>
<td>17.2mJ/cm²</td>
<td>17.2mJ/cm²</td>
</tr>
<tr>
<td>LWR</td>
<td></td>
<td>5.8nm</td>
<td>5.5nm</td>
<td>-</td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EUV Resist with High absorption resin</th>
<th>HP</th>
<th>22 nm HP</th>
<th>20 nm HP</th>
<th>19 nm HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td></td>
<td>15.0mJ/cm²</td>
<td>15.0mJ/cm²</td>
<td>15.0mJ/cm²</td>
</tr>
<tr>
<td>LWR</td>
<td></td>
<td>5.5nm</td>
<td>5.8nm</td>
<td>-</td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Sensitivity improved by 15 % with high absorption resin**
EUV Resist RLS Improvement
-EUV lithography related materials-

- Resist Materials
 - Short acid diffusion length PAG
 - High Tg resin
 - High absorption resin

- Related Materials
 - Under-layer
 - Top-coat

- Process
 - Rinse agent
 - DSA

- Rinse agent
- DSA
Development of Under Layer (UL) – Si-HM

✓ Si-HMs in different contact angle were evaluated to understand the effect of Si-HM composition on resist pattern line collapse
Si-HM Impact on Resolution

<table>
<thead>
<tr>
<th>Si-HM</th>
<th>30 nm HP</th>
<th>28 nm HP</th>
<th>26 nm HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-HM-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact angle: 100 (relative value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-HM-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact angle: 104 (relative value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-HM-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact angle: 106 (relative value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-HM-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact angle: 109 (relative value)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Higher contact angle of Si-HM improves resist pattern collapse
- Surface property is the key factor for improvement of pattern collapse
Si-HM impact on Sensitivity

<table>
<thead>
<tr>
<th>HP</th>
<th>32 nm HP</th>
<th>30 nm HP</th>
<th>28 nm HP</th>
<th>26 nm HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>16.0mJ/cm²</td>
<td>16.0mJ/cm²</td>
<td>16.0mJ/cm²</td>
<td>16.0mJ/cm²</td>
</tr>
<tr>
<td>LWR</td>
<td>4.1nm</td>
<td>3.7nm</td>
<td>4.3nm</td>
<td>-</td>
</tr>
</tbody>
</table>

Image

- Sensitivity improved by 15% with Si-HM.
EUV Resist RLS Improvement

-Process-

Resist Materials
- Short acid diffusion length PAG
- High Tg resin
- High absorption resin

Related Materials
- Under-layer
 - Top-coat

Process
- Rinse agent
- DSA
FIRM™ Rinse* Process Impact for Pattern Collapse

Without FIRM™ rinse

<table>
<thead>
<tr>
<th>Dose (mJ/cm²)</th>
<th>28.9</th>
<th>30.7</th>
<th>34.2</th>
<th>36.0</th>
<th>37.8</th>
<th>39.5</th>
<th>41.3</th>
<th>43.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (nm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 nm HP</td>
<td></td>
</tr>
</tbody>
</table>

With FIRM™ rinse

<table>
<thead>
<tr>
<th>Dose (mJ/cm²)</th>
<th>28.9</th>
<th>30.7</th>
<th>34.2</th>
<th>36.0</th>
<th>37.8</th>
<th>39.5</th>
<th>41.3</th>
<th>43.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (nm)</td>
<td>21.5</td>
<td>20.9</td>
<td>20.1</td>
<td>20.0</td>
<td>19.0</td>
<td>18.3</td>
<td>16.8</td>
<td>-</td>
</tr>
<tr>
<td>20 nm HP</td>
<td></td>
</tr>
</tbody>
</table>

*FIRM™ Extreme™ 12

- **FIRM™ rinse process improves pattern collapse margin**

FIRM™ Rinse Process Impact for Resolution and LWR

<table>
<thead>
<tr>
<th>HP</th>
<th>20 nm HP</th>
<th>19 nm HP</th>
<th>18 nm HP</th>
<th>17 nm HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRM™ Rinse</td>
<td>LWR:3.4 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRM™ Rinse</td>
<td>LWR:2.8 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Higher resolution observed with rinse process
- LWR improved by 15% with rinse process

FIRM™ Extreme™ 12
Contents

- Challenge for EUV Resist & JSR approaches
- Development of new materials and process for Resolution, LER and Sensitivity (RLS) improvement
- Combination of materials and process
- Sub 22 nm CH patterning with EUV lithography and Directed Self-assembly (DSA) process
- Summary
Exposure result on SEMATECH Berkeley MET

LS Ultimate resolution
- 16nm LS
- 15nm LS
- 14nm LS
- 13nm LS

CH Ultimate resolution
- 20nmC40nmP
- 20nmC60nmP

Berkeley MET, NA0.3, Pseudo PSM
Sensitivity: 44mJ/cm²

Berkeley MET, NA0.3, Quadrupole
Sen. 63mJ/cm²
Sen.105mJ/cm²

➢ JSR EUV resist has the potential to achieve of 14 nm LS and 20 nm CH patterns
Exposure result on imec NXE:3100

LS Performance

22nm LS

- Sensitivity: 13.5mJ/cm²
- LER: 3.1nm

20nm LS

- Sensitivity: 13.8mJ/cm²

CH Performance

28nm CH

- Sensitivity: 16.2mJ/cm²
- LCDU: 1.0nm

26nm CH

- Sensitivity: 16.8mJ/cm²
- LCDU: 1.0nm

Imec’s NXE3100, NA0.25, Dipole60X

With FIRM™ rinse.

LER: 3σ

- JSR EUV resist shows good RLS and LCDU performance for 2x nm generation

2012 International Symposium on Extreme Ultraviolet Lithography Oct. 1, 2012
Contents

- Challenge for EUV Resist & JSR approaches
- Development of new materials and process for Resolution, LER and Sensitivity (RLS) improvement
- Combination of materials and process
- Sub 22 nm CH patterning with EUV lithography and Directed Self-assembly (DSA) process
- Summary
EUV Lithography with DSA

<table>
<thead>
<tr>
<th>Polymer phase separation</th>
<th>Blend type (PolymerA/PolymerB)</th>
<th>BCP type (PS-b-PMMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No specific dimension, morphology, or periodicity</td>
<td>Intrinsic dimension and predetermined morphology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH Shrink</th>
<th>Guide pattern Less polar polymer Polar polymer</th>
<th>Guide pattern PMMA PS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polar polymer remains for pattern shrink and less polar polymer is removed</td>
<td>PS remains for pattern shrink and PMMA is removed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development</th>
<th>Organic solvent</th>
<th>Dry development UV irradiation with polar solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 -150 °C</td>
<td>200 -250 °C</td>
</tr>
</tbody>
</table>
EUV Lithography with DSA

- Guide pattern (EUVL)
- Polymer blend coating
- Annealing
- Wet Development

✓ Polymer blend DSA material was investigated for CH shrink process
EUV Lithography with DSA

<table>
<thead>
<tr>
<th></th>
<th>EUV lithography</th>
<th>EUV + DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>105 mJ/cm²</td>
<td>32.1 mJ/cm²</td>
</tr>
<tr>
<td>LCDU</td>
<td>4.6 nm</td>
<td>4.9 nm</td>
</tr>
</tbody>
</table>

- **EUV lithography followed by polymer blend DSA process achieved 20 nm contact hole patterns**
- **EUV+DSA process improves resist sensitivity**
Summary

✓ Material & process development for RLS improvement
 • New high Tg or high absorption resin shows good balance between LWR and sensitivity
 • Si-HM UL improves resolution and sensitivity
 • Rinse agent improves resolution and LWR
 • EUVL with polymer blend DSA process improves sensitivity for CH process

✓ Combination of material and process for ≤ 22 nm hp patterning
 • JSR EUV resist achieved 14 nm LS and 20 nm CH resolution on SEMATECH Berkeley MET
 • JSR EUV resist shows good RLS and LDCU performance for 2x nm hp generation on imec NXE:3100.
Acknowledgment

The authors gratefully thank imec, SEMATECH, and CXRO for the close collaboration
Thank you for your attention!!