EUV Mask Challenges, Status, and Closing the Remaining Technology Gaps

Frank Goodwin, Vibhu Jindal, Patrick Kearney, Ranganath Teki, Jenah Harris-Jones, Andy Ma, Arun John Kadaksham, Stefan Wurm

SEMATECH
SEMATECH Champion Data

- Achieved 12 defects @ 45 nm or 8 defects @ 50 nm from M7360 inspection
 - 10 pits (from substrate), 1 handling defect, **1 defect from deposition**
- 65% reduction in defects from last year champion data (23 defects @50nm)
Yield analysis with M1350 (>70nm) and M7360 (>45 nm) [SiO$_2$ equiv.]

- Quality blanks: ~70% of yield below 30 defects >70nm from M1350
- 60% of Quality blanks have less than 30 defects >45 nm from M7360
- 20% of Quality blanks have less than 20 >45 nm from M7360
• 2015
 – Overall defect counts should meet requirements
 – Large size “Killer” defects still present

• HVM
 – Significant improvement needed to meet logic specifications

• Recent gains where made with the substrate
 – Reduction of cleaning induced defects
 – Substrate quality improvement at suppliers

• Process yields are not good
Substrate challenges

• Approximately 60%-65% of total mask blank defects originate from substrate defects

• Meeting simultaneously: substrate finish, figure (flatness), roughness and defect specifications is a significant challenge
 – Substrates are amorphous in nature, making it difficult to control CMP

• Reaching figure and finish specifications requires several iterations between global and local polish
 – This creates defects such as scratches or embedded particles

• The surface physical and chemical properties are modified by the polish steps and do interact with the cleaning processes
 – Tight management and control between final polish and cleans to ensure cleaning does not introduce additional defects
Substrate Defects

- Defect signature is different between suppliers
- Majority of substrate defects are not detection during inspection
 - Majority only become visible after ML deposition through decoration
 - Decoration through ML deposition is of limited value
 - Adds to cycle time and reduces learning cycles
 - Adds complexity to data analysis
- Will require substrate inspection capability
 - Current technology not able to detect sub-35nm pits (SiO2 equiv.) or shallow scratches
 - Plans for actinic inspection tools for mask blanks will not address this gap
EUV Substrate Gaps

- Defect levels, roughness and flatness specifications must be met for successful EUVL implementation.

EUVL Substrate Requirements @22 nm HP node

<table>
<thead>
<tr>
<th>Specification</th>
<th>Source</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect size</td>
<td>ITRS 2011 Update</td>
<td>0 defects @ 40 nm+</td>
</tr>
<tr>
<td>Defect density</td>
<td>SEMI standards, 2009 update</td>
<td>0 defects @ 40 nm+</td>
</tr>
<tr>
<td>Roughness</td>
<td>P. Naulleau, LBNL</td>
<td>~0.05 nm</td>
</tr>
<tr>
<td>Flatness</td>
<td>ITRS 2011 Update</td>
<td>80-100 nm typical</td>
</tr>
<tr>
<td>Local Slope</td>
<td>ITRS 2011 Update</td>
<td>No issues</td>
</tr>
</tbody>
</table>
Mask Blank ML Deposition Challenges

• Approximately 20%-25% of total mask blank defects are deposition related
• Mask blank defectivity requirements have not yet been demonstrated
 – Large “killer” defects are a significant problem
 • Prohibits implementation of defect mitigation schemes
 • Comes from deposition tool and process
 • Detected on each mask blank SEMATECH has measured
 – Defect counts are close to meeting memory and pilot line logic requirements
 • Requires ~4X improvement to meet logic HVM specifications
• Deposition process yield
 – Quality deposition region is only 10%, at best, of overall process run
 – Target surfacing and burn-in critical
Tool and Process Limitations

• Limitations of deposition chamber and process
 – Overspray of ion source
 – Substrate Handling
 – Process yield, significant number of deposition cycles required to reach quality deposition region
 – Small process window for reflectance uniformity
 – Shield surfaces
 – Proximity of substrate to shields

• New Deposition Tool is Required
 – Cleaner, less divergent ion source
 – Chamber with a larger volume
 – New substrate location
 • May require flexibility to move substrate to multiple positions
 – Cleaner handling of substrates and mask blanks
 • May require dual pod solution
Optimized Ion Beam Profile For Defect Reduction

- Higher operating voltages/currents can give narrower focus on target
- New parameters give $< \frac{1}{4} \%$ of peak etch at edge of target
 - Does not completely eliminate sputtering of shields
EUV Mask Blank Gaps

- Defect levels, roughness, and reflectivity

<table>
<thead>
<tr>
<th>EUVL Mask Blank Requirements @22 nm HP node</th>
<th>Specification</th>
<th>Source</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect size</td>
<td>18 nm</td>
<td>ITRS 2011 Update</td>
<td>12 defects @ 45 nm+</td>
</tr>
<tr>
<td>Defect density</td>
<td>0.002 defects/cm2</td>
<td>Device Manufactures</td>
<td>0.043 defects/cm2</td>
</tr>
<tr>
<td>Roughness (rms)</td>
<td>0.05 nm</td>
<td>Defect Metrology</td>
<td>~0.14 nm</td>
</tr>
<tr>
<td>Reflectivity</td>
<td>65%</td>
<td>ITRS 2011 Update</td>
<td>63%-64%</td>
</tr>
</tbody>
</table>
Mask Blank Roadmap

Blank defects

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pilot start
- 1 defect > 150nm
- 27 defects < 150nm

SMT
- 19 defects > 50nm
- 8 defects > 50nm

Industry Need

- **Memory**
 - 0: > 150 nm
 - 22 defects @ 50 < x < 150 nm
- **Logic**
 - 0: > 100 nm
 - 3 defects @ 50 < x < 100 nm

Tool Capability

- **ML Dep.**
 - Veeco LDD1
 - New tool needed YE 12

Substrate Inspection
- Available @35nm+
 - For substrate
- Low cost new tool needed: @25nm+
- Low cost new tool needed: @20nm+

Blank Inspection
- Available @40nm+
 - For blanks
- Low cost new tool needed: @25nm+
- Actinic needed
- Low cost new tool needed: @20nm+
High Level Requirements for Actinic Blank Inspection

• Inspection requirements:
 – Substrate pits/bumps (phase defects) must be detected
 – Particles, even just under the capping or top multilayers (amplitude defects) must also be detected

• Classification and review requirements:
 – Review should accurately localize the defects so mitigation by pattern shifting can be used.
 – Defects should be classified, and near the sensitivity limit, reviewed to determine printability
Defect Trends of Suppliers

- Defect trends of mask blank suppliers are improving
- However, delivered mask blanks will have some defects
- Defect printing mitigation methods will be needed
Mask Layout Pattern Shift

• Position design layout so that all mask blank defects remain covered by the absorber

• Remaining questions:
 – Probability of eliminating all blank defects using pattern shift
 – Potential impact on field size
 – Allowed defect count and size distribution

• Successful pattern shift requires:
 – Excellent coordinate accuracy
 – Low-defect fiducial process
 – Infrastructure for sorting blanks and matching to mask patterning
 – All printable defects need to be detectable
Current EUV Mask Technical Gaps

• Challenges with defects continue:
 – Substrate Defects
 • Defects become visible after deposition
 – Multi-Layer Deposition
 • Killer defects from ML deposition still an issue
 • Low process yield
 – Defect free EUV masks
 • Mitigation of mask blank defects will be required
 – Metrology
 • What inspection capability existing is running out of steam
 • Inspection tools required to meet HVM requirement are not available

• Infrastructure
 – New generation of ML deposition tool is needed
 – Metrology and inspection tool development required
Closing the Gaps

• Mask blank suppliers maintaining their current roadmaps
• Consortia and Mask Blank Suppliers continue to work on EUV development
 – Substrate polishing and cleaning
 – ML Deposition tool and process optimization
• Consortia and Tool Suppliers are addressing tool gaps
 – Inspection tools
 • Mask Blank (substrate?)
 • Pattern Mask
 – Deposition
 • Next generation IBD tool
• Pre-production exposure tools
 – Increasing mask manufacturing cycles of learning
 – Driving focus on process yield across all areas of mask manufacturing
 • Lack of metrology tools demands wafer print for process and defect verification which is slowing learning
• Increased focus by industry on addressing HVM needs
Thank You
Accelerating the next technology revolution

Research

Development

Manufacturing