
NIKON CORPORATION 
Core Technology Center EUVL multilayer mirror oxidation modeling 

Tsuneyuki Hagiwara, Tetsuya Oshino, Noriaki Kandaka,  
Takashi Yamaguchi, Atsushi Yamazaki and Katsuhiko Murakami 

7. Summary 
-- Multilayer oxidation model successfully predicts reflection change in various experimental conditions.  
-- Life time estimation of EUV optics in various conditions  becomes available. 
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1. Introduction 
 Oxidation is one major cause which degrades the reflectivity of the multilayer mirrors used for optics of EUV 
exposure tools.  To estimate the change of reflectivity due to oxidation, modeling of the multilayer mirror 
oxidation was becoming greater importance.  
  Bajt, et al. experimentally evaluated the oxidation of the EUV multilayer mirrors with Ru cap using ALS at 
Lawrence Berkeley National Laboratory [1] .  They compared the oxidation of EUV multilayer mirror cased by 
electron beam irradiation and EUV irraditation [2] .  Klebanoff, et al. proposed the mitigation of oxidation by 
use of the ethanol [3] .  Hollenshead and Klebanoff modeled EUV/H2O oxidation of Ru coatings [4] .  They 
detailed the oxidation of Ru coatings causing by H2O.  
  We have modeled the oxidation of the EUV multilayer mirror based on these prior studies.  We have 
evaluated EUVL multilayer mirror oxidation model comparing its prediction with experimental data. 

2. Multilayer mirror oxidation model 
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 The central term in Eq. (2) shows the rate of dissociation of water 
molecules as shown in Eq. (3) .   

0I : photon flux ( photon/Å2s-1 ), phσ : relevant cross section for 
directphoton-induced dissociation ( Å2/molecule )、R : mirror reflectance

OH
adN 2 : number of adsorbed water molecules per area( molecule/Å2 ). 

)(DISE : relevant cross section for electron-induced dissociation 
(Å2/molecule).  D : depth, O

adN  : number density of oxygen atoms, 
max_O

adN : maximum allowable concentration of oxygen as oxide. 
 
 
 

 

Rate equation for adsorbed H2O molecules 
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adN 2 : the number density of adsorbed water molecules per area 
( molecule/ Å2 ), s : condensation coefficient, molΓ  : impingement rate of 
water molecules from the vapor, max

adN : maximum allowable adsorbed 
water density, τ : residence time.  The central terms in Eq. (1) shows the 
rate of dissociation of water molecules as shown in Eq. (3). Last term in 
Eq. (1) shows surface diffusion. r: distance from EUV beam center, SDD : 
Diffusion coefficient of surface diffusion. 
 
 
 
 
 
 

Diffusion into optics 
 Here we consider the multilayer structure consists 
of m layers.   nM ( )mn 3,2,1=  is the element of  
of the n’th layer. The diffusion coefficient of each 
layer is )(nbulkD . O

ndiffN )( is density of oxygen atom 
diffusing into n’th layer.  Eq. (4) shows the diffusion. 
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Initial and boundary conditions 

Eq. (5) shows the initial condition.  
0)()3()2()1( ===== O

mdiff
O
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O
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O
diff NNNN  at 0=t   )5(  

 Eq. (6), (7) and (8) show the boundary condition.  Eq. 
(8) derives from mass conservation of oxygen. nl  is 
mono layer thickness of the oxide which is determined 
by Eq. (9) where the oxide of the element nM  is 

nxnOM  
and the molecular volume of 

nxnOM is nv .  s is solubility. 
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5. Model fit to experimental data and material properties 
  The exact value of “diffusion coefficient” and ”adsorption energy of water” of multi-layers are  not 
available.  So we fit the model output (reflectance) to the experimental data (reflectance) by tweaking 
“diffusion coefficient” and ”adsorption energy of water” as parameters.  Model fit was done at one 
experimental condition: EUV irradiance=80mW/mm2, EUV exposure duration= 6hour, H2O partial 
pressure=1mPa and EUV beam diameter=690μm for both Si cap and RuO2 cap cases.  Eventually we 
obtained estimated “diffusion coefficient” and ”adsorption energy of water” as shown in Table 1.  In this 
table, we have also listed  literature values [5] , [6] and they are very close to our estimated values.  
This would reinforce the validity of our multilayer mirror oxidation model. 
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See poster OP-05 "Oxidation durability of the Mo/Si multilayers with an oxide capping layer" by 
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3. Multilayer mirror structure 
 
 
 
 
 

 
 
 
 

    Each multilayer model was constructed by XPS result, measured reflectance and TEM observation.  
“Initial” means ”as-deposited” .  

Initial reflectivity= 66.7% 
 

4. SEY (Secondary electron yield)  
 Spectral SEY was measured for calculation of secondary electron generation.  Measurement was done 
experimentally using beam BL-11D at Photon Factory in KEK (High Energy Accelerator Research 
Organization). 
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Material Adsorption energy of H2O molecule (kJ/mol) Diffusion coefficient of oxygen (m2/sec) 
SiO2 50.5 (≃50 as quartz [5] ) 1.48E-22 
RuO2 51 (51.3 as metal Ru [6] ) 7.3E-24 
Mo To be obtained 3.8E-24 

Table 1 

6. Model prediction for various experimental conditions   
     Using the estimated  “Diffusion coefficient” and “adsorption energy”, we compared the model prediction 

with experimental data obtained in other experimental conditions shown below.  Good agreement 
between model predictions and experimental data has been successfully verified. 
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6.1 EUV irradiance dependence 
 (Si cap, H2O partial pressure=1mPa) 

6.2 H2O partial pressure dependence 
(Si cap, EUV irradiance=80mW/mm2) 

Solid lines= model predictions, plot= experimental data 
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