

Solutions with light – meet challenges and offer opportunities

Optical performance of 5.5 sr LPP multilayer collectors

2011 International Symposium on EUV Lithography

Torsten Feigl, Hagen Pauer, Marco Perske, Sergiy Yulin, Marcus Trost, Sven Schröder, Angela Duparré, Norbert Kaiser, Andreas Tünnermann

Fraunhofer IOF Angewandte Optik und Feinmechanik Jena, Germany

Miami, October 18, 2011

Torsten.Feigl@iof.fraunhofer.de

- Introduction
- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement

Introduction

- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement

Coating and characterization of LPP collector optics

[[]Nature Photonics 4, 24-26 (2010)]

LPP collector coating challenges

R > 65 % λ = (13.5 ± 0.03) nm

- → △d = 0.015 nm = 15 pm
- Diameter: > 660 mm
 Lens sag: > 150 mm
 Tilt: > 45 deg
 Weight: > 40 kg

Introduction

- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement

Surface characterization of EUV collector substrates

- No reliable roughness data available so far:
 complex geometry
 roughness < 0.2 nm
- Development of new surface characterization based on light scattering
- Light scattering:
 - fast
 - non-contact
 - comprehensive
 - high sensitivity

Surface characterization of EUV collector substrates

Measurement of ARS and determination of PSD function

- \rightarrow Perfect fractal behavior at smooth and rough areas
- → Prediction of performance at 13.5 nm based on detailed roughness information (PSD, HSFR)

Prediction based on roughness data obtained from scattering (before coating)

sample 2

Reflectance measurements at PTB, Berlin (after coating)

Reflectance drop > 45 %

- → Good correlation between predicted and experimental data
- → Accuracy of average predicted reflectance: $\Delta R < 1\%$

- Fast data acquisition: mapping of entire sample surface (100% characterization)
- High sensitivity to roughness (average HSFR = 0.1 nm)

→ Thorough characterization of collector substrate before coating

 \rightarrow Check for homogeneity and defects

Introduction

- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement

NESSY – ,New' EUV Sputtering System

Design and realization of an EUV sputtering system

Conception:

- magnetron sputtering of rotating and fast spinning substrates up to Ø 665 mm
- four deposition targets
- deposition of graded multilayers on curved substrates

Reflectivity of LPP collector mirror

Maximum reflectance along four lines within clear aperture of collector mirror:

R ~ 65% @ r < 240 mm R ~ 62% @ r = 250 ... 320 mm

Measurements: PTB Berlin

Reflectivity of LPP collector mirror

Center wavelength along four lines within clear aperture of collector mirror:

 $\lambda = (13.50 \pm 0.03) \text{ nm}$

Measurements: PTB Berlin

Optical performance of 5.5 sr LPP multilayer collectors

Reflectivity of LPP collector mirrors ... climbing the learning curve

Introduction

- Characterization of LPP collector substrates
- Multilayer coating of LPP collectors
- Summary and acknowledgement

Summary

- Characterization of EUV collector optics:
 - light scattering technique for HSFR substrate characterization
- Multilayer coating of EUV collector optics:
 - R > 65 % and d-spacing accuracy of $\Delta d < 15 \text{ pm}$ on world's largest EUV multilayer mirror (Ø > 660 mm)

Acknowledgements

Cymer for LPP source development:

Norbert Böwering, Kevin Cumming, Bruno La Fontaine, David Brandt, Igor Fomenkov, Alex Ershov, Kay Hoffmann and many others

PTB Berlin team for EUV reflectivity measurements:

Frank Scholze, Christian Laubis, Christian Buchholz, Annett Kampe Jana Puls, Christian Stadelhoff, Martin Biel

EUV project team @ Fraunhofer IOF:

Christoph Damm, Andreas Gebhardt, Tobias Herffurth, Christina Hüttl, Robert Jende, Thomas Müller, Viatcheslav Nesterenko, Michael Scheler, Thomas Peschel, Stefan Risse, Sebastian Scheiding, Christoph Schenk, Ronald Schmidt, Mark Schürmann, Uwe Zeitner

Thank you!

24

II II

X. C. A. S. C.

-

1 Sin viel innini

1

h bu