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» Scaling Through Wavelength Reduction
* We must make wavelength reduction work, DSA augments
lithographic imaging
 CAresist design allows weak source to be utilized

 Polymer and PAG design have met the challenge in previous
generations

* Polymer-bound PAG offers lower blur CA resist

» Low Diffusion Resist Design that has resolution, sensitivity and LWR

* Anion- bound PAG lithographic polymers enable 20-nm
lithography, can we extend to sub-20nm?

* |mprove resist quantum yield, resist absorption and density,
reduce acid blur

* LWR improvement through improved acid quantum yield, resist
absorbance

» Models show resist with high acid quantum yield and higher
resist absorbance improves LWR

» Substrate optimization for LWR and PCM

« Pattern Colllapse Margin improved with substrate optimization
for CTE and surface energetics
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Imaging at Different Wavelengths

Requires Different Photoresist Chemistry 4@;
®
436/365nm Novolak 193nm 13.4nm Polymer-Bound
Resin 248nm ESCAP Methacrylate Resin JPAG Methacrylate Resin
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436/365nm DNQ PAC [248nm TPS PAG 193nm TPS PAG

SO,0R triphenyl sulfonium camphor-10-sulfonate triphenyl sulfonium perfluorobutane sulfonate

Resist Transparency dominates earlier wavelengths
Acid Diffusion dominates EUV CA resists

Attaching PAG anion is a clever way to reduce diffusion but adds polymer complexity
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Concept: Polymeric-bound PAG [PBP]
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Polymer-bound PAG Resist Concept



Benefits of Polymer-bound PAG Approach

T

* Limits PAG outgassing: covalent attachment of PAG to polymer
reduces small molecule evolution from Resist

* Allows Effective Higher Loading of PAG without aggregation or
phase separation

* Forces a more uniform distribution of PAG in the resist film

* By attaching the PAG anion to the lithographic polymer, photoacid
diffusion is limited by polymer chain mability

» Can be used in 193nm, EUV, or ebeam lithography for ultra-high
resolution where throughput is an issue
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THE NEXT CHALLENGE: EUV



Critical Challenges for EUV Resists

<>

Challenge Areas to work on
Fundamental EUV interaction with Resist Electron blur, line slimming, negative
Material resist behavior, acid yield
Resolution Polymer-bound PAG, low activation LG,
swelling reduction, acid blur
LWR Polymer-bound PAG, etch trim, rinse,
polymer homogeneity
Photospeed EUV sensitization, higher PAG loading
Etch Resistance Lower Ohnishi parameter approach
Pattern Collapse Lower A/R, UL matched for adhesion,
surfactant rinse
Qutgassing PAG byproducts from ionization, LG and
solvent effects, other species?
Defects HSP solvents, aggregation elimination
Quality Control EUV photospeed test, EUV chemical

signature requirement
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EUV RESIST OUTGASSING

PPPPP



EUV Fundamental Studies - Outgassing

* Reduced Outgassing

» (Cation change reduces outgassing 4x
 No DPS fragments (186amu)

* No fragments from ~120-200amu

O New PAG Cations
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Outgassing and Contamination

Ellipsometry

BG resist

ADT cont.
thickness ~0.1nm

MET-2D

*High BG resist

contaminating
resist’

ADT cont.
thickness ~1.4nm

X-Ray Photoelectron

RGA
Spectroscopy (XPS)
e
Cc 100% 100% :,
S 0% 0% th -

Isobutene, and probably also SO,
do not contribute significantly to
resist related contamination

TPS is nroblematic

| [BG_|Res [N N\
C 100% 98.5% :, '

S 0% 1.5%

Sulfur containing PAG cation seems
to play key role in contamination

-Sublimation and condensation results in contamination of optics and mask
-Expensive — much more expensive than 193 and 248 tools

10



Witnhess Plate Results

Non-cleanable Reflectivity Loss
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* Extremely low reflectivity loss after atomic H cleaning

* Low Diffusion PBP Resist meets the NXE requirements
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OUT-OF-BAND RADIATION



Out-of-Band (OOB) Radiation Problem :
LPP Sn-based Source

» EUV Sources Emit Electromagnetic ____2nspuiss
Radiation from 100 -300 nm wavelength
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300 + - - 1-um-thick sphere
0.1-um-thick plane
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« From the graph, 200nm energy

200 |-

~8x-15x less than 100nm energy

« Mostif not all resists for EUV use PAGs
that are designed for 193nm and
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Radiation energy in 2x [ud/nm]

248nm exposure 100 200 300 400
Wavelength [nm]
* COUld the OOB radlatlon cause FIG. 3. (Color online) Measured OOB spectra (130—-400 nm wavelengths)

thICkneSS IOSS at the top Of reSISts? t,zld:lfh:::\“u pulse. The targets were 1-gm- and 0.1-gm-thick Sn planes
*  Could OOB radiation cause LWR?

APPLIED PHYSICS LETTERS 92, 111503 (2008)

Absolute evaluation of out-of-band radiation from laser-produced tin
plasmas for extreme ultraviolet lithography
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Recent Improvements on OOB - Improved PAG Design

<>

Eo (mJ)

OOB: PAG cation effect

/ —4—PAG-ref
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/ —B-PAG-DB
25
/ f 4= PAG-DB-TB
20 /// ==fe=PAG-DB-ME
15 == PAG-DB-MB
10 /////- ——PAG-TX-TB

= PAG-TX-MB

35

PAG-I-TB

EUV ArF KrF

Eo ratio

DUV Eo ratio relative to EUV Eo

12.00
10.00
8.00
6.00
4.00
2.00 I I:
0.00 u
PAG-ref PAG-DB PAG-DB-TB | PAG-DB-ME | PAG-DB-MB | PAG-TX-TB | PAG-TX-MB PAG-I-TB
B EUV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W ArF 0.40 1.90 2.47 2.11 2.69 1.29 0.83 0.86
W KrF 1.33 6.17 7.67 8.04 11.55 4.55 2.87 3.45

*>15 New PAGs were Screened for OOB
* Identified Several New Promising Candidates for Formulation Optimization
* These improvements will be Incorporated Future Litho DOEs




LWR IMPROVEMENT



How to Reduce EUV Acid Uncertainty [true

source of LWR]? <>

(Assume dose is held constant)

Increase PAG

5209 Y f-(na-(n)) 1
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Increase Photoelectron
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) ) Increase.
(h)=1-e Absorption

Mack, Thackeray, Biafore, Smith, Proc. SPIE 7969, 796919 (2011) Increase C 16



What Stochastic modeling tells us about
EUV Resist Improvement T

» Shorten Acid Diffusion Length

Increase PAG Loading (density)

* Higher PAG density leads to higher sensitivity which means more
quencher which is good for LWR

Increase Photoelectron Generating Efficiency

* Use polymer matrix that easily yields electrons ( Low electron
affinity polymers)

Increase Resist Absorption

* Use fluorinated monomers, use methacrylate monomers ( only
20% EUV photons absorbed at 40nm FT )

Increase C( acid yield)

* Improve EUV response of PAG vs OOB response
* Attach electron accepting groups to PAG
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30nm

28nm

25nm

Low PAG density

5.2nm

LWR =

Med PAG densit

vl
= 3.8nm

LWR

High PAG density| &

LWR =3.1nm



Image Log-Slope and Exposure Latitude E

« For an infinite contrast resist,

JhnE 17Inl
OCD 2 OX

 For example, for a £10% CD specification,

% Exposure Latitude ~ 10*NILS

(where it was assumed that NILS is about constant over the £10% CD range)

Ref. C.Mack, “Fundamentals of Optical Lithography”
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Results of Recent C/H Evaluation at LBNL (30nm 1:1 C/H) -

|dentified Improved Formulations @

Control Sample-A Sample-B Sample-C

1.74nm CDU( 5 die avg) 1.44nm CDU( 5 die avg) 1.54nm CDU( 5 die avg) 1.44nm CDU( 5 die avg)
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EUV RESIST SUBSTRATE
DEPENDENCE



Substrate Choice for EUV Resist

T

 Silicon HM material

» Advantages: good for etch integration, use ArF formulations to
help with OOB minimization

» Challenges: Resist poisoning, stability, surface energy
matching, developer penetration, CTE

* Organic UL

» Advantages: universal substrate, chromophore inclusion for
OOB minimization, ultrathin coatings possible

» Challenges: etch selectivity, surface energy matching, CTE
* Direct on Substrate

» Advantages: reduced coat steps

» Challenges: individual resists for different substrates [resist
complexity], no OOB minimization, etch recipe optimization
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28nm HP Overexposure Margin 50nm FT
(Si HM, ORG UL, Primed Si)

Resist:
Resist Film Thickness=500A
ARC: Control Si HM

Resist: )
Resist Film Thickness=500A
ARC: Control UL; 205°C/60s

Resist:
Resist Film Thickness=500A
Primed Si




Low Diffusion Resist Performance on Si-HM vs Organic UL

Organic UL
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EUV, EBEAM AND 193 CAPABILITY OF
PBP



Prospects for the Future

Ultimate Resolution of PBP CA resist @

Ultimate Resolution of EUV PR with e-Beam
- 15nm hp Resolution with PBP Platform
BE 22 EREBEE R ‘i 3

}i : z 25nmhp-Dose n°18
RER B
IHRHBEU RE BT
EUV dipole 193 annular
20nm hp 38nm hp

Not resolution limited—
Pattern Collapse limited!

1Snmhp-Dose n®18
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EUV Resist Development Status E

» PBP-based resist remains the lead candidate for EUV lithography

o Steady progress in acid yield, absorbance, OOB, outgassing,
substrate optimization continues

o Steady progress in LWR continues

* Resolution is currently 19nm hp by EUV, 15nm hp by ebeam---
limited by pattern collapse and LWR not resolution!!

* Source improvements will improve stochastic effects leading to
better resist performance

* Optics and mask improvements will improve aerial image leading
to better resist performance
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