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• Substrate defectivity
– Defectivity trend
– Substrate cleaning challenges

• Blank defectivity
– Backside contamination
– Blank lifetime

• Storage of blanks
– Storage environment
– Storage box

• Removal  Carbon contamination from EUV masks
– Worse case scenario

Outline
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Blank defectivity

substrate
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Deposition
25%

Typical blank defectivity
(>50 nm defects)

~100 defects

Pit
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Obliquedeposition

Normal 

deposition

Blank defect type
(>50 nm defects)

Pit should be smoothed
on substrate

Small particles should be 
removed from substrate

• Substrate defectivity is the main contributor to blank defectivity.
• Defect reduction is only possible through close collaboration 

between CMP, cleaning, and ML deposition .
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SEMATECH’s EUV substrate defect 
trend (post-cleaning)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Jan-2003

Jan-2004

Jan-2005

Jan-2006

Jan-2007

Jan-2008

Jan-2009

Jan-2010

Jan-2011

Jan-2012
D

ef
ec

t D
en

si
ty

 (D
ef

ec
ts

/c
m

^2
) 

(S
ca

le
d 

to
 1

8n
m

)

LTEM

Quartz

M1350 M7360 upgrade 

( ) 8.31 x
aY

+
=

1 defect

A. Rastegar /A. John

No solution

LTEM

Quartz

• Substrate defectivity is continuously improving
• Defectivity gap between LTEM and quartz material is reducing
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Trend of substrate defect reduction by 
SEMATECH

• Improving cleanliness of the  
cleaning tool and process has 
resulted increase in the 
cleaning yield of mask 
substrates
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ASC Yield  Q1 2010
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Challenges of substrate cleaning: 
cleaning tool and process capability 

• Yield of cleaning processes drastically reduces for smaller defects
• Yield loss is due to low PRE  and high adders for small defects

~50% Yield reduction !
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Challenges of substrate cleaning: pits 

~43 nm inspection sensitivity

Before cleaning After 1X cleaning After 100X cleaning After 100X cleaning

~30 nm inspection 
• Cleaning processes create sub 40 nm pits on substrate detectable

only by M7360 
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Area scanned 
by nozzle

Impact 
Area

Megasonic 
Nozzle

Substrate

Origin of small pits 

30 nm 53 nm

• Sub-30 nm pits are added by cleaning at a much higher rate than 
50 nm pits
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Challenges of substrate cleaning:  
small particles 

Before cleaning After cleaning

Intended defect
removed
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• Cleaning tool/ processes add very small particles (~ 10 nm to 17 nm) 
that CANNOT be detected with existing defect inspection tools

• These can be smoothed by ML deposition for 22 nm HP
• New cleaning tool and technology is required for 16 nm HP node
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Cleaning of Ru-capped MoSi blanks 

• Cleaning can create pits on the multilayer

post-cleaning
Very large defects

• Large embedded defects can be etched

Before cleaning After cleaning Added by cleaning

• Soft defects (>70 nm) are easily removed

post-deposition

• Most remaining defects are embedded

TEM: Jenah Harris-Jones
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Typical MoSi ML blank after
ML deposition

Typical EUV mask after
patterning and final clean

Typical EUV mask after
chucking multiple times

in exposure tool

Backside defects of EUV masks 
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• There are many defects on the backside of EUV masks.
• All particles larger than 1 μm should be removed.

small defect
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Challenges of backside cleaning
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Mechanism of frontside contamination 
during backside cleaning

Contact Angle on Ruthenium VS Time
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• Surface energy of Ru 
changes rapidly by 
exposure to different 
gases and chemicals

• Only SPM chemistry can 
reduce Ru surface energy 
for a longer period of 
time

APM: NH4(OH)/H2O2/H2O

SPM: H2SO4/H2O2

Pre Cleaning
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How many times a mask can be cleaned? 
(Mask lifetime)
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• Masks can be cleaned up to 20X with these processes

0.19% change in EUV reflectivity
by 20X cleaning is better than that 
of standard SPM process

• Further process development is in progress to increase mask lifetime

• New cleaning processes were developed can clean front and backside 
of the mask without  contamination by control of Ru surface energy
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Effect of cleaning chemistry on storage 
lifetime of Ru-capped blanks

AMP
Or
H2/DI

APM chemistry  

Stored in N2

Stored in Air

Pozzetta

Stored in N2

Stored in Air

H2/DI chemistry Pozzetta

• Surface energy of Ru changes when stored in N2 environment 
depending on cleaning processes.

APM: NH4(OH)/H2O2/H2O
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Surface Energy &particle adders

AMP
Or
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APM chemistry  

Stored in N2

Stored in Air
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• There is a correlation between number of particle adders and Ru 
surface energy (i.e., contact angle).

• More particles added in N2 atmosphere than in the air.

Accumulated adders (P4+)  inspected by M1350
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Storage lifetime of Ru-capped blanks: 
effect of storage pod

Accumulated adders (P4+)  inspected by M1350
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• Plates stored in new RSP 200 did not have particle adders during
28 days, regardless of storage atmosphere and cleaning 
chemistry.
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Cleaning of carbon-contaminated EUV masks 
after 4000 wafer exposures (1025 resists)

Contamination
After clean
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• Recently developed cleaning processes removed EUV mask 
contamination after EUV (micro) exposure of >4000 wafers (77 dies 
per wafer) and 1025 different resists and recovered the dose.
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Conclusions

Surface/node 22nm HP 16 nm HP Critical Issues
Substrate on schedule Need New Clean 

technology
Inspection tool
PRE, Adders

Blank (Ru cap) on schedule Need New Clean 
Technology

Ru damage   
Lifetime, Adders

Patterned mask on schedule Need New Clean 
Technology

Particle inspection
PRE, damage

• Storage
– Particle deposition depends on storage atmosphere
– Work in progress on storage in vacuum and other gases

• Lifetime
– 20X optimized processes are available
– Work in progress to extend lifetime to 50X cleaning cycles

• Mask Cleaning Readiness

SEMATECH Focus: New Cleaning Technology Development
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