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Outline

Creating a collector meeting the technical requirements of 

EUVL technology for the 27-nm node in HVM

Creating a collector meeting the COO requirements (cost, 

lifetime, serviceability, easy replacement)

Electroforming collector technology enables 
the EUVL Technical and COO requirements
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EUVL source technologies and key parameters

DMT (mechanical, gas)

Plasma IF IF
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10 kW 100→200 W 100→200 W

Lifetime
Exchange time
Cost and cycle time

Thermal control
Collection efficiency

COLLECTOR
Power at IF
Transmission of optical train
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Availability
Serviceability
Cost of replacement parts

Cost of Ownership

SCANNER / SOURCEEND-USER VALUE 

Eformed Collector is a key enabling component for source Technology and EUVL Affordability

Discharge Produced Plasma (DPP) Laser Produced Plasma (LPP)
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High-accuracy replication by electroforming

OPTICAL SUBSTRATE

FINAL MIRROR

OPTICAL LAYER DEPOSITION

OPTICAL SUBSTRATE

TRADITIONAL OPTICS 
MANUFACTURING

HIGH-ACCURACY REPLICATION BY ELECTROFORMING

OPTICAL MANDREL

ELECTROFORMING 
(INTEGRATED COOLING)

SEPARATION

Repeatable, lower cost and shorter cycle 
time technology applicable to complex and 
diverse shapes

Replication transfers 
Shape & Roughness 
from mandrel to mirror

FINAL THERMALLY 
CONTROLLED MIRROR

OPTICAL LAYER DEPOSITION

REPLICATED MIRROR WITH THERMAL CONTROL

Same optical req’s
(shape, roughness)
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Unique challenges of EUVL source applications

X-ray radiation

X-ray telescope

Detector

0.1 µm P-V mirror optics

Focusing precision < 75 µrad

X-ray radiation

X-ray telescope

Detector

0.1 µm P-V mirror optics

Focusing precision < 75 µrad

SPACE

EUVL

1990-1993 1993-1995 1995-1999 2006… …2015

BEPPO-SAX JET-X XMM eROSITA NHXM

1990-1993 1993-1995 1995-1999 2006… …2015

BEPPO-SAX JET-X XMM eROSITA NHXM

MLT has addressed these unique requirements for EUVL source with Electroformed Collectors

IFThermal load

Sn Deposition+
Erosion

Easy replacement

PLASMA
IFThermal load

Sn Deposition+
Erosion

Easy replacement

PLASMA
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Critical parameter: Collection Efficiency
Collection efficiency is key enabler for DPP source power roadmap for HVM

Alpha EUVL collector

27nm node HVM collector

~2 sr

~4 sr

OPTICAL DESIGN

IF

IF

OPTICAL LAYER

Advanced PVD processing yielded ~10% Ru
reflectivity increase from ALPHA to HVM

Average Ru reflectivity @ 21°

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

ALPHA HVM

a.u.

27-nm node HVM collector designed with collection efficiency of 25% (point-source, 2π)

27-nm HVM Collector Optical design:
Max source emission angle
Max volume allowance for DMT
Nominal illuminator requirements

~2x power increase

12% collection efficiency

25% collection efficiency
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Thermal control: enabler for DPP power scalability

Thermal load

Active cooling ensures stable 
optical performanceActive cooling

Active cooling

Thermally controlled Electroformed Collector enables 
DPP Power Scalability to 27 nm node and beyond

6 kW

100 W
27 nm

10 kW

200 W
27-22 nm

>18 kW

300+ W
16 nm

10 WIF power 
3 kWCollector heat load

ALPHA

New design and 
fabrication process

New materials and 
new design Scaling
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Optical layer optimized for >1-year lifetime

OPTICAL LAYER (MLT)

Current EUVL scanners show that fast ions erode Ru faster than Sn deposits…
…and that Ru reflectivity remains constant in erosion regime.

>1-year Lifetime by combined design of Optical Layer (MLT) and DMT (Philips, XT)

New optical design with double volume 
allowance enables more efficient DMT

DMT (Philips/XT)

+

Reflective layer optimized 
for source erosion pattern

>1-year lifetime proven

EUV Ru reflectivity remains 
constant during erosionFast ions erode Ru reflective layer

Collector at end of life

Measured erosion rate of 2 nm / bpulse
(data courtesy of Philips – XT)
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First GI Collector integrated in 27-nm DPP source
3-shell collector (nominal configuration has 9 mirror-shells)

Measured point-source collection efficiency = 9%
This result supports reaching the 25% design value on the full configuration collector

New cooling for 6 kW heat load (absorbed)

Collector successfully integrated in Philips-XT DPP source for 27 nm node in HVM

Courtesy of Philips Extreme UV
and XTREME technologies

Measured collection efficiency = 9% (point-source, 2π)

Design collection efficiency = 25% (point-source, 2π)

First 27-nm node HVM collector 
(3 mirror shells)

27-nm node HVM collector   
(9 mirror shells)
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Grazing Incidence Collector product roadmap

CE 30%
>15kW cooling

Lifetime

16 nm
27-22 nm

A
LPH

A

2011

CE 25%
10kW new cooling

Lifetime

2010

CE 25%
6kW new cooling

Lifetime

20092008

CE 12%
3kW new cooling

Lifetime

2007

CE 12%
3kW cooling

Lifetime

2006

CE 16%
1kW cooling

2005 2012

Power at IF 8 W 100 W 200 W > 300 W

Today

Collectors integrated in different DPP sources and illuminators enabled 4-year learning
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High-accuracy replication by electroforming
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Technology addressing LPP source collectors

2D PSD of electroformed substrate

Demonstrated sub-micron shape control on 
electroformed mirror

64% reflectivity MoSi multilayer coated on low-roughness 
electroformed samples 

150 mm

Angle of Incidence = 5°
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Economical benefits of replication by eforming

TRADITIONAL REPLICATION BY ELECTROFORMING
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REPLICATION BY ELECTROFORMING HAS INHERENT COST AND CYCLE TIME BENEFITS
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Conclusions

Electroformed Collector is a key enabler for source technology (Thermo-Optical Parameters)

and EUVL affordability (Lifetime, Cost of Replacement Part, Time to Replace)

GI-Collector successfully integrated in Philips-XT DPP Source for the 27-nm node

Sub-micron shape accuracy and multilayer reflectivity proven for LPP source application

Lifetime, Cost, and Cycle-time benefits allowed by high-accuracy replication by 

electroforming

6 kW

Thermal Load

1 year

Lifetime

9% (25% in full configuration)

Collection Efficiency (point-source)
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