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Project goal

•
 

Design correction for EUV requires a flare map
 of the design

•
 

How can we calculate a flare map accurately?
–

 

Experimental flare levels have to be measured accurately and 
precisely

–

 

The experimental flare levels have to be translated into a point-

 spread function for flare map calculation

•

 

How do we optimize the point-spread function parameters to 
match the experimental flare tests?
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Outline

•
 

Flare Metrology
–

 

Basic Issues

–

 

Dose Regimes

–

 

Contrast-Based Algorithm

•

 

Precision
•

 

Accuracy

•
 

Generation of calibrated flare maps
–

 

Flare Measurement and Monitoring

–

 

Single Fractal PSF Approximation

–

 

Role and Optimization of the PSF parameters 

–

 

Comparison of optimized PSF with experiments

–

 

DUV contribution

–

 

CD Modeling

•
 

Conclusions



EUVL Symposium 18-21 Oct 2009
© imec 2009 4

Flare Metrology:
 Basic Issues

•

 

DEFINITION:
–

 

Flare is estimated by measuring the dose to clear of a 2μm line

•

 

ACCURACY:
–

 

Different tools / operators will define the dose to disappear of

 

a line differently

•

 

PRECISION:
–

 

The flare estimate is usually not fully automated in terms of measurement and analysis
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It is critical to introduce an accurate and precise flare metrology
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Flare Metrology:
 Dose Regimes
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Cross
Linking

–

 

Metrology Tool: CD SEM

–

 

4 different dose regimes can be identified by 
image analysis

Fully 
eroded

Dark Line

Rough
surface

Bright LineDark Line

Smooth
surface

The contrast change between resist and substrate can be 
exploited to develop an automated measurement algorithm
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Flare Metrology: 
Contrast-based algorithm -

 
Precision

–

 

1mm long 2μm line was measured through dose (0.5mJ/cm2

 

step) in 41 independent locations

–

 

Average dose of ~ 13.42 mJ/cm2, corresponding to flare level of ~13.89% 

–

 

Repeatability measured on 6 different flare locations on the same wafer by re-measuring 5 times
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Flare Metrology: 
Contrast-based algorithm -

 
Accuracy

Cross Section SEM
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A contrast-based flare algorithm yields an accuracy of Δ = 0.12% 
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–Average dose of ~ 13.54 mJ/cm2, corresponding to flare level of ~13.77% 
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Outline

•
 

Flare Metrology
–

 

Basic Issues

–

 

Dose Regimes

–

 

Contrast-Based Algorithm

–

 

Precision

–

 

Accuracy

•
 

Generation of calibrated flare maps
–

 

Flare Measurement and Monitoring

–

 

Single Fractal PSF Approximation

–

 

Role and Optimization of the PSF parameters 

–

 

Comparison of optimized PSF with experiments

–

 

DUV contribution

–

 

CD Modeling

•
 

Conclusions
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Generation of calibrated flare maps: 
Flare Measurement and Monitoring

• 2 micrometer Kirk testpads

 
on 6 sites on mask with different local tiling

•

 
6 flare sites were measured with REMA blades closed and open on

 
2μm 

targets

• The 6 flare sites with REMA open were used as flare monitoring

Flare was not observed to change over 10 months period (~6000 MPulse)
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Generation of calibrated flare maps: 
Single fractal approximation

Goal: Understand and optimize the parameters r min Scale and N to 
provide the best match with experimental flare measurements on the ADT
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–

 

Simulation Input: Single fractal approximation of PSF with 3 adjustable 
parameters

–

 

Simulation Output: Flare maps of with REMA closed and open

–

 

Comparison with experiment: Accuracy plot of experimental vs. 
simulated flare

–

 

DOE: optimization of r min, Scale and N requiring 400 flare maps

1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01

1.E+00

0.01 1 100 10000

r (um)

P
S

F 
(1

/u
m

2)

PSF = Scale / r N

r > rmin



EUVL Symposium 18-21 Oct 2009
© imec 2009 11

Generation of calibrated flare maps: 
Role of the parameters -

 
Scale
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• Scale acts by introducing a multiplicative factor in the flare map

•

 

By tuning Scale it is possible to ensure that the accuracy plots are 
linear with slope 1

• Scale does not affect R2

 

and offset
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Scale modulates the accuracy linearity
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Generation of calibrated flare maps: 
Role of the parameters -

 
N
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•

 

The N parameter acts modifying the relative weight of short and

 
long range flare

•

 

By tuning N it is possible improve the fit quality of the fit R2

 

to 
flare data

•

 

N impacts linearity as well, so it has to be optimized before 
Scale

N influences the R2 of the accuracy plots 
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Generation of calibrated flare maps: 
Role of the parameters -

 
r min

• r min alters difference in flare between different targets 

• r min does not alter the comparison with 2μm pads
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•

 

Although r min clearly influence the scaling 
properties of flare, its effect is not quantifiable by 
comparison with 2μm lines measurements

• A different approach is required to calibrate r min
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Generation of calibrated flare maps: 
Optimization of the parameters -

 
N and Scale 
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•

 

N and Scale are optimized by comparing simulated and experimental flare on 
2μm targets

• N is optimized by using R2

 

as cost function

• Scale is optimized by imposing accuracy slope = 1 and

 

the optimized value of N

Optimization of N and Scale provides good R2

 

and linearity
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Generation of calibrated flare maps: 
Optimization of the parameters -

 
r min

• 2μm pads are not sufficient to calibrate r min flare scaling properties

• Pads of different size up to 30μm are used instead

Optimization of r min using pads of different size ensures correct flare scaling
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Generation of calibrated flare maps: 
Comparison of optimized PSF with experiments

• Very good match of experiment and simulation

• The offset of ~ 2.5% was observed with different PSF /Methodology

•Comparison of simulation and experiment for 2 μm pads
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Generation of calibrated flare maps: 
DUV Contribution

Exposure (70mJ/cm2)

Light reflected by REMA

REMA blades closed

• High dose exposure with REMA closed (70 mJ/cm2)

• REMA can only reflect DUV and visible

• This results indicates ~ 2-3% DUV content (Eo

 

= 2 mJ/cm2)

• The offset of ~ 2.5% can be interpreted as DUV contribution 
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Outlook: CD Modeling

• Accurate flare modeling absolute requirement for CD modeling
•

 

First models with background flare show rms

 

error around 1nm 
can be obtained

• CD modeling through flare and orientation 
- ShinEtsu

 
SEVR59

- Proximity data at 3 flare levels
- Vertical and Horizontal orientation
- 600 datapoints

 
total
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Conclusions

•
 

Flare Metrology
–

 

The automated flare metrology we implemented is both accurate

 

and 
precise

•
 

Generation of calibrated flare maps
–

 

Flare has been monitored for 10 months and no change was observed

–

 

We reported on flare map calibration using single fractal PSF

–

 

More than 400 flare maps were generated and compared to experiments

–

 

After optimization, the single fractal model reproduces accurately the 
experimental flare results

–

 

An offset is observed and attributed to DUV contribution

–

 

CD data have been measured to verify the impact of flare compensation 
and develop full scale EUV OPC

–

 

Initial CD modeling over a broad range of flare shows an rms

 

error of 
~1nm
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