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Need for an EUV pellicle

•Pellicle-less EUV lithography development is a priority, with risk

– Dual pod reticle handing and shipping without generating particles

– Operating within the lithography tool without added defects

– Metrology confirmation of defect free reticles at sub-30nm

•The aim of this research is to create an EUV pellicle as a backup 
to pellicle-less operation

•An EUV pellicle is expected to have trade-offs

– Moderate transmission loss

– Minimal uniformity loss

– Minimal contrast loss
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Concept

•The Concept

– Thin film mounted on a wire-mesh

– Mesh located “far” from reticle plane to defocus defects

– Transmission requires a high percentage open area

– Illumination uniformity requires partial coherence

Square cell mesh
Hexagonal cell mesh Stand-off height = 6 mm

Mesh pitch

• Mesh 
apodizes the 
illuminator 
exit pupil 
and PO 
entrance 
pupil. 

• Mesh film 
absorbs with 
both passes. 

• Mesh 
apodizes the 
illuminator 
exit pupil 
and PO 
entrance 
pupil.

• Mesh film 
absorbs with 
both passes.



Yashesh A. Shroff, Pei-Yang Yan, et. al.                                               

EUVL Symosium, 2007 5

EUV pellicle specs
Current Target

Frame length/width 149/122mm

Height 6.3mm

Transmission 50% 60% (2007)

70% (2008)

Film thickness 100nm ±

 

4nm 50nm ±

 

2nm

Transmission uniformity ±

 

1% ±

 

0.6%

Film stress Tensile (<50MPa)

#wafers/pellicle - > 2000

Stiffness 193nm frame

Defects (#broken cells/frame)

For double-pass txm: 33.8% / 70%

0 / 30% 0

Pellicle material outgassing - TBD
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Full-size pellicle developed

• Si membrane on 70LPI (363μm pitch) mesh

Transmission
• 1-pass: 58.1%
• 2-pass: 33.8% Demonstrated in 10/2006
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Transmission loss

 Single Pass Double Pass 
 Mesh Si Native SiO2 T 
Si d=50nm 96% 91.8% 95% 71% 
Si d=60nm 96% 90.0% 95% 67% 
Si d=70nm 96% 88.7% 95% 65% 
Si d=80nm 96% 87.2% 95% 63% 
 

ML

Mesh: 10μm line/400μm pitch

•Best case of pellicle transmission 
double path we can achieve ~ 70%
– Combining 96% mesh and 88% Si 

(50nm thickness) in the fabrication 
process
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Thermal Considerations: 
Pellicle heating/cooling cycle for HVM conditions

• Pellicle heating, modeling assumptions:

– Primary cause of pellicle heating is from absorption of EUV and OoB 
radiation. 

– Slit scan speed: 10ms/cm (slit width 1cm)

– Energy dump on pellicle during slit exposure only (tslit =10ms)

– 25.7% of incident power is absorbed by the pellicle (ML reflectivity = 65%)

• Pellicle cooling, modeling assumptions:

– Radiation induced cooling – emissivity of Silicon, ε=0.1

– Heat loss during slit non-exposure, available time: tdie ~350ms

• If radiation induced cool down (ΔT=0) time is less than the cycle time 
of the mask, additional cooling mechanisms are unnecessary. Let’s 
look at the transient response of pellicle heating…
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Transient Thermal Response

•Pellicle heating via absorption:

–

•Pellicle cooling via radiation:

–
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Transient temperature

Incident power = 8W
Incident power = 50W

Emissivity, ε=0.1
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• Incident EUV power at reticle plane is expected to be ~5W for 100WPH 
tool. For 8W, the rise in temperature is <200K. Impact:

– Si expansion inside hexagonal area bonded by Ni mesh has no impact on 
imaging due to almost matched index of reflection with that of vacuum 

– Experiment of pellicle heating at 240ºC for 3 hours showed no membrane 
damage

• No concern on Ni expansion

– Temperature increase in Ni mesh is estimated within a few degrees

– Thermal expansion of Ni is negligible

Pre-heating                 Post-heating

Pellicle Heating Impact
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Sputtered Si based membrane fabrication

• Current process of record for making full-size EUV pellicles

• Mounting with 250μm pitch, 93% transmissive Ni mesh ongoing

1. Start with Si substrate

2. Spin release layer

3. Deposit thin Si layer

4. Attach Ni mesh (atomized epoxy)

5. Release Si membrane

6. Mount Si membrane to pellicle 
frame
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Pellicle transmission improvement
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Recent Result
Last year's results

– Fabricated using LBNL Si deposition

– Mesh transmission: 90%

– 100nm Si membrane transmission: 80%

– Transmission improved by 
reducing C and O contamination 
during Si sputtering. 

Comparison with last yearCurrent pellicle transmission

Measured average pellicle T = 72%
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Alternative approach: Single crystal Si based membrane

<Si> membrane
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Release: Quartz Wafer Vapor HF-Acid Etcher*

Lid- holds the wafer down

Plastic Screws - holds the lid down # 3/8-16

Base – holds HF Acid under the wafer, 
and O- rings

Quartz Wafer - 150mm (5.92”)
O-rings

Hydrofluoric Acid – to etch SiO2

NO Metal - All Plastic

Clearness for Film

Small Vent Holes

Can Be Turned Up-Side-Down *Made by Luxel Inc.
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Single Crystal Silicon 
based mesh fabrication

• Advantages:
– Increase mesh height to CD aspect 

ratio: improves robustness for given 
transmission

– Thermal: Mesh same as membrane (Si) 
removes impact from CTE mismatch

• Process flow:
1. Start with 25μm device layer thickness 

SoI wafers

2. Lithography: hex pattern on top

3. STS based etch to achieve vertical 
sidewalls

4. Release with HF

• Design:
– Current: 10μm LW / 250μm pitch, 25μm 

deep (81% 2-pass txm)

– Target: 8um LW / 400um pitch,  50μm 
deep (90% 2-pass txm)

STS etch and 
HF release

25
μm

10μm
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Summary

• Thermal:
– Transient analysis of pellicle heating indicates that cooling may be achieved with 

radiation. 

– For 8W incident EUV power and no OoB assumed, rise in pellicle temperature is 
<200oC.

• Design & Fabrication: 
– High transmission (93% 1-pass) nickel mesh has been successfully bonded with a 

sputtered Si film. 

– Significant improvement in Si film deposition demonstrated: measured T=72% 
matches calculated transmission.

– Silicon-on-Quartz based process developed to improve membrane robustness.

– High aspect-ratio silicon-only mesh fabricated on a 4” wafer process with 92% 1-pass 
transmission.

– Demonstrate full-size 70% double pass transmission pellicle.

– Generate 8” SoQ based pellicle with target mesh transmission of 95%

– Bond Si mesh with SoI wafer to create Si-only mesh 

Future work
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