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Outline

• EUV resist status and challenges 

• New resist platform improvements

• Resist performance summary
– Resolution
– LWR/LER
– Failure mechanisms

• Improvements from process refinements
– PEB optimization
– LER reduction

• Metrics for performance improvements
– Process window
– MTF and resist blur
– Image-log-slope metrics (RELS)

• Summary and acknowledgments
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Resist Performance Status and Challenges

• Current status of chemically amplified resists: best performance
is not achieved simultaneously for all critical parameters

• Critical parameters and agents are interrelated
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What Limits Resolution?

• Chemical amplification
– Solubility switching (deprotection) of resist polymers occurs by 

a catalytic reaction-diffusion process

– For 32nm node and below, ‘low diffusivity’ resists are required

• Development process
– Failure mechanisms

Top loss, ‘crumbling’
Pattern collapse

Interfacial properties (resist and liquid)
Yield stress; elastic vs. elastoplastic deformation
Aspect ratio scaling

• Fundamental materials properties- ultrathin film behavior

• Component miscibility and morphology (aggregation)

Less diffusion
Less blur

Less reaction

Higher resolution
Higher dose

Lower resolution
Lower dose

More diffusion
More blur

More reaction
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XP-6627-Q Platform with Improved Performance
LBNL MET, Y-monopole illumination, FT = 50 nm

36L80P 27 mJ/cm2

LER/LWR = 3.2/5.3 nm
32.4L72P 27 mJ/cm2

LER/LWR = 2.9/4.4 nm
28.8L64P 27 mJ/cm2

LER/LWR = 3.2/4.8 nm

25.2L56P 27 mJ/cm2

• Improved resolution, LER, and thin-film performance
• XP-6627 resist family uses ‘new generation’ materials
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Rohm&Haas EUV Resists- Process Refinement

• XP-5494 and XP-6305 resist families contain both high activation 
energy (Ea) and low Ea blocking groups

• Very good resolution with process windows at 40 and 35 nm 1:1 l/s
(Y-monopole illumination)

• Performance can be systematically varied with formulation 
refinement

• Goals:
– Examine impact of process refinement on resist performance
– Assess metrics for showing process improvement
– Link metrics with materials fundamentals
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XP-5494-C, 80 nm FT
40 nm l/s patterns
LBL MET Y-monopole illumination
LBL Reticle Resolution DF
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~15% EL @ 200 nm DOF
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XP-5494-C, 80 nm
35 nm l/s patterns
LBL MET Y-monopole illumination
LBL Reticle Resolution DF
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~5% EL @ 100 nm DOF
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XP-5494-C LER Trends

• Limiting LER ~3.5 nm
• Expected dose/focus trends 

are observed
• Topography complicates 

LER analysis
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Failure Mechanisms

• Feature-size dependent continuum of top-loss and pattern collapse
• LER measurement effects can be seen prior to CD measurement effects

40L80P

35L70P

Top Loss Pattern Collapse
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50 nm 1:1

CD=44.3nm 
3σ=3.9nm

45 nm 1:1

CD=40nm 
3σ=3.4nm

40 nm 1:1

CD=36nm 
3σ=3.8nm

CD=38nm 
3σ=3.6nm

35 nm 1:1

CD=34nm 
3σ=4nm

CD=30nm 3σ=5nm CD=29nm 3σ=8nm

This bar represents full thickness (80nm)

Top-Loss Failure SEM Comparison: MET-1K
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Film Thickness Effects: XP-6305-G

• Top-loss and roughness become worse as thickness decreases
• Ultrathin film regime
• Sub-60 nm thicknesses are needed for 22 nm node

40L80P, 10.8mJ/cm2

LER=7.1±1.1

FT = 40nm

40L80P, 10.8mJ/cm2

LER=4.2±0.9

FT = 62nm

40L80P, 11.3mJ/cm2

LER=3.7±0.7

FT = 80nm
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XP 6305-A, 80 nm thickness
40 nm l/s at best focus in first row;  35 nm l/s patterns at best focus in second row
LBL MET Y-monopole illumination;  LBL Reticle Resolution DF

20.732 27.783 29.172

Nominal Dose (mJ/cm2)

30.631 32.162

33.770

21.769 22.857 24.000 25.200 26.460

40 nm l/s

35 nm l/s

40 nm l/s

35 nm l/s

Lower
PEB

35 nm l/s

40 nm l/s
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SEM line slimming- XP-5494-K
SEM Image Capture Modifications

• Lower beam current, fast image acquisition, consistent dwell time
• This is an enabling modification for lithographic analysis that follows
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XP-6305-A 40L80P Process Window 
vs. PEB Temperature
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Effect of PEB Temperature on Effective Resist Blur

0

0.2

0.4

0.6

0.8

25 30 35 40 45 50

PEB = 90 oC
PEB = 100 oC
PEB 110 oC
Aerial Image MTF
Blurred MTF 90 oC
Blurred MTF 100 oC
Blurred MTF 110 oC

M
o
d
u
la

ti
o
n
 T

ra
n
sf

er
 F

u
n
ct

io
n

CD (nm, 1:1 l/s)

PEB 
Temperature

(oC)

Effective Resist 
Blur (nm)

90 22

100 29

110 32

XP-6305-A

Blur simulation- thanks to Patrick Naulleau, LBNL



October 25, 200617 2006 EUVL Symposium

3

3.1

3.2

3.3

3.4

3.5

15 17.5 20 22.5 25

Low PEB 40 nm

Med PEB 40 nm

High PEB 40 nm

CD/2 (nm)

ln
(d

os
e)

PEB Temperature Impact on Resist-Edge Log Slope

• At constant Esize, RELS increases as PEB decreases
• Link between simulation and experiment
• RELS, ILS strongly correlated with process 
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PEB Temperature Impact on LER and LWR

• Lower LER at 90 oC PEB temperature
• PSD from averaged measurement of 40 lines at equivalent Esize

LWR α (integrated PSD)1/2

ITRS specifies low-frequency LWR as 
0.5 < f(x) < 1/MPU Pitch (μm-1)
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Summary Table- PEB Variation for XP-6305-A

• By all metrics, lower PEB temperature appears superior-
– MTF increases as PEB temperature decreases
– Resist blur decreases as PEB temperature decreases
– At constant Esize, RELS increases as PEB decreases
– Possible trend to lower LER/LWR at lower bake temperature

PEB
(oC)

EL 
(at 200 nm DOF) 

(40L80P)

MTF
(40L80P)

Effective 
Resist Blur

(nm)

RELS
(μm-1 at Esize)

LER/LWR 
(nm 3σ at Esize)
(~ITRS 22 nm 

node)

16.2

15.1

11.2

3.6/5.55122

29 43

32 40

4.2/7.0

4.3/6.8

90 0.36

100 0.28

110 0.26
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Surface Conditioners for LER/LWR Reduction
XP-5494-C

Baseline Process

CD = 41.7 +/- 0.8 nm
LER = 4.3 +/- 0.4 nm
LWR = 6.6 +/- 0.7 nm

Surface Conditioner Process

CD = 40.6 +/- 0.6 nm
LER = 3.2 +/- 0.4 nm
LWR = 5.0 +/- 0.9 nm

• Surface conditioners are known to improve LER, pattern collapse, and 
defectivity for 248 and 193 nm lithography

• Process-
– apply surface conditioner rinse at end of development
– optional bake following drying

• ~1 nm LER reduction from surface conditioner alone; bake effect unclear
• No change in resolution capabilities; effects on CD are minor or negligible
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Resist Process LWR PSD Comparison vs. ITRS 2005
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• Example process includes surface conditioner rinse and post-rinse bake
• Rinse reagent LWR reduction is substantial even at low frequency
• Net LWR reduction from rinse treatment increases for smaller nodes
• ITRS LWR targets remain a challenge
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Summary

• EUV resist performance can be significantly improved through 
process refinement

• Performance improvements from PEB optimization may include 
improved process window and lower LER/LWR

• Performance improvement metrics appear to fundamentally link PEB
improvements to resist blur and development contrast

• Surface conditioners may be an effective method to help bridge the 
gap between observed LER/LWR trends and industry needs

• New materials with improved resolution, LER/LWR, and ultrathin film 
performance have been successfully developed
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