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Outline

= EUV resist status and challenges
= New resist platform improvements

= Resist performance summary
— Resolution
— LWR/LER
— Failure mechanisms

= Improvements from process refinements
— PEB optimization
— LER reduction

= Metrics for performance improvements
— Process window
— MTF and resist blur
— Image-log-slope metrics (RELS)

- Summary and acknowledgments
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Resist Performance Status and Challenges

Litho shrink, k, factor
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Fundamentals
diffusivity,
activation energy,
dissolution
phenomena,
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Yield, LER

Device Performance,
CD control, ACLV,
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throughput, process
complexity, $$

Sensitivity

Throughput, $$

Current Resolution | LER (nm) | Sensitivity
status* (nm) (mJ/cm?)
Best ~30 nm ~7nm 25 mJ/cm?
Resolution | half-pitch
Best LER 30 nm 3nm Overdosed
isolated > 30mJ/cm?
Best 45 nm >10 nm 6 mJ/cm?
Sensitivity | half-pitch

* Public status prior to 2006 EUVL Symposium

= Current status of chemically amplified resists: best performance
Is not achieved simultaneously for all critical parameters

= Critical parameters and agents are interrelated
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What Limits Resolution?

= Chemical amplification

— Solubility switching (deprotection) of resist polymers occurs by
a catalytic reaction-diffusion process

i i Less diffusion More diffusion i
Higher resolution Lower resolution
i Less blur More blur
Higher dose . . Lower dose
Less reaction More reaction

— For 32nm node and below, ‘low diffusivity’ resists are required

- Development process
— Failure mechanisms
Top loss, ‘crumbling’
Pattern collapse
Interfacial properties (resist and liquid)
Yield stress; elastic vs. elastoplastic deformation
Aspect ratio scaling

- Fundamental materials properties- ultrathin film behavior

= Component miscibility and morphology (aggregation)
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XP-6627-Q Platform with Improved Performance
LBNL MET, Y-monopole illumination, FT = 50 nm

| : .l .

!ll | )i" 'l‘

36L80P 27 mJ/cm? 32.4L72P 27 mJ/cm?2 28.8L64P 27 mJ/cm?2
LER/LWR = 3.2/5.3 nm LER/LWR = 2.9/4.4 nm LER/LWR = 3.2/4.8 nm

25.2L56P 27 mJ/cm?

< Improved resolution, LER, and thin-film performance
- XP-6627 resist family uses ‘new generation’ materials
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Rohm&Haas EUV Resists- Process Refinement

= XP-5494 and XP-6305 resist families contain both high activation
energy (E,) and low E_, blocking groups

= Very good resolution with process windows at 40 and 35 nm 1:1 I/s
(Y-monopole illumination)

- Performance can be systematically varied with formulation
refinement

- Goals:
— Examine impact of process refinement on resist performance
— Assess metrics for showing process improvement
— Link metrics with materials fundamentals
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XP-5494-C FEM
0 40L80P
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~15% EL @ 200 nm DOF

100

XP-5494-C, 80 nm FT

40 nm I/s patterns

LBL MET Y-monopole illumination
LBL Reticle Resolution DF

150

24.000 25.200 26.460 27.783 29.172 30.631 32.162 33.770 35.459

Nominal Dose (mJ/cm?)
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XP-5494-C FEM
35L/70P

-100
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o

Defocus (nm)

~5% EL @ 100 nm DOF

50

XP-5494-C, 80 nm

35 nm I/s patterns

LBL MET Y-monopole illumination
LBL Reticle Resolution DF

100

26.460 27.783 29.172 30.631 32.162 33.770

Nominal Dose (mJ/cm?)
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XP-5494-C LER Trends
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= Limiting LER —3.5 nm

= Expected dose/focus trends

are observed
-

Topography complicates
LER analysis
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Failure Mechanisms

40L80P Top Loss Pattern Collapse

35L70P

= Feature-size dependent continuum of top-loss and pattern collapse
- LER measurement effects can be seen prior to CD measurement effects
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Top-Loss Failure SEM Comparison: MET-1K
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Film Thickness Effects: XP-6305-G

FT =62nm FT =40nm

S

1
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54800 2.0kV x150k SE(M,LAD)

40L80P, 10.8mJ/cm?

40L80P, 11.3mJ/cm?
LER=3.7+0.7 LER=4.2+0.9 LER=7.1+1.1

= Top-loss and roughness become worse as thickness decreases
- Ultrathin film regime

« Sub-60 nm thicknesses are needed for 22 nm node
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| 40 nm /s
33.770

Lower
PEB
35nm /s
20.732 21.769 22.857 24.000 25.200 26.460 27.783 29.172 30.631 32.162
; 2
XP 6305-A, 80 nm thickness Nominal Dose (mJ/cm?)

40 nm |/s at best focus in first row; 35 nm |/s patterns at best focus in second row
LBL MET Y-monopole illumination; LBL Reticle Resolution DF
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SEM line slimming- XP-5494-K
SEM Image Capture Modifications

44

* 2kV 7 uA 1280x960
» 2kV 2 uA 640x480

Measured CD (nm)

32

0 0‘.5 i 1‘.5 2
log(time (s))

- Lower beam current, fast image acquisition, consistent dwell time
= This is an enabling modification for lithographic analysis that follows
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XP-6305-A 40L80P Process Window
vs. PEB Temperature
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Effect of PEB Temperature on Effective Resist Blur

XP-6305-A
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Blur simulation- thanks to Patrick Naulleau, LBNL

16 October 25, 2006 2006 EUVL Symposium



PEB Temperature Impact on Resist-Edge Log Slope
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PEB Temperature Impact on LER and LWR
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Lower LER at 90 °C PEB temperature

=  PSD from averaged measurement of 40 lines at equivalent E_,,
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Summary Table- PEB Variation for XP-6305-A

PEB EL MTF Effective RELS (|;r|n£ i’;\év_R)
Q) o oLsom (40L80P) ReSom | et TR s m
90 16.2 0.36 22 51 3.6/5.5
100 15.1 0.28 29 43 4.2/7.0
110 11.2 0.26 32 40 4.3/6.8

- By all metrics, lower PEB temperature appears superior-
— MTF increases as PEB temperature decreases
— Resist blur decreases as PEB temperature decreases
— At constant E;,., RELS increases as PEB decreases
— Possible trend to lower LER/LWR at lower bake temperature
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Surface Conditioners for LER/LWR Reduction
XP-5494-C

Baseline Process Surface Conditioner Process
CD =41.7 +/- 0.8 nm CD = 40.6 +/- 0.6 nm
LER = 4.3 +/- 0.4 nm LER = 3.2 +/- 0.4 nm
LWR =6.6 +/- 0.7 nm LWR =5.0 +/- 0.9 nm

- Surface conditioners are known to improve LER, pattern collapse, and
defectivity for 248 and 193 nm lithography

= Process-

— apply surface conditioner rinse at end of development

— optional bake following drying
= ~1 nm LER reduction from surface conditioner alone; bake effect unclear
= No change in resolution capabilities; effects on CD are minor or negligible
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Resist Process LWR PSD Comparison vs. ITRS 2005
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< Example process includes surface conditioner rinse and post-rinse bake
- Rinse reagent LWR reduction is substantial even at low frequency

= Net LWR reduction from rinse treatment increases for smaller nodes

< ITRS LWR targets remain a challenge
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Summary

= EUV resist performance can be significantly improved through
process refinement

= Performance improvements from PEB optimization may include
improved process window and lower LER/LWR

- Performance improvement metrics appear to fundamentally link PEB
improvements to resist blur and development contrast

= Surface conditioners may be an effective method to help bridge the
gap between observed LER/LWR trends and industry needs

= New materials with improved resolution, LER/LWR, and ultrathin film
performance have been successfully developed
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