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Challenges for EUV Resists

In particular, 2005 ITRS Roadmap lists the following
three criteria as major challenges for EUV resists

— obtaining < 3 nm 30 LWR

— obtaining < 10 mJ/cm? sensitivity

— obtaining < 40 nm 72z pitch resolution

Outgassing is also a major concern

Recent work on conventional CAR designs seems to
iIndicate a trade-off between LWR, sensitivity, and
resolution that will likely prevent their use

Important factors controlling all three behaviors appear
to include:

— Photoacid diffusion

— PAG loading

— Inhomogeneous distribution of resist components such as PAG
— Size of resin molecules
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Possible Photoacid Diffusion Effects: 3

Image Blur Line Edge Roughness (LER)
hwv . ' '
Mask Radiation Microscopic
-j H A= heterogeneous
Exposure “ Generation of deprotection
Acidic Catalyst
B Mask Rough
Post Acid diffusion & line edge
Exposure Rosin Polymer Photoresis
Bake Solubility Switching
Substrate
Develop
Broadenlng of the patterned feature size Tradltlonal CAR 3GL ER > 5n m

Traditional CAR photoacid diffusivity: >5nm

i

—_— -
—_— -

2006 EUVL Symposium @E‘




Possible Solutions - #1: Base Quencher Additives
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Base quencher molecules are added to limit the diffusion
range of photoacid and improve environmental stability.
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Possible Solutions - #2: Low Activation Energy Resists
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G. M. Wallraff, et. al., JVSTB 2004

Problems:

1. Studies have shown low activation energy materials exhibit
more substantial outgassing.

2. Have still generally shown poor LER/LWR performance.
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Possible Solutions - #3: Molecular Glass Resists 6
Polyhydroxystyrene
(50 repeat units)

TPS.Nonaflate

Resist monomer

TS
0 OH
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“ OH

Da Yang, et. al., J. Materials Chemistry 2006

Advantages:

1. Reported low LER (3c LER ~5 nm).
2. Better phase compatibility with PAGs.
Potential Problems:

1. Does not directly address acid diffusion
p and may in fact make it worse.
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Possible Solutions - #4: Polymer-bound PAG Resists

Example cation-bound PAG resist
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Advantages: E

1. Substantially higher PAG loadings are possible (retain sensmwty
with reduced acid diffusion).

2. Eliminates segregation and inhomogenous PAG distribution.

3. Permits direct acid diffusion control.
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Characterization of bound and blend resists
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HOST-EAMA Blend F4-IBBS.TPS

Mole Feed Ratio Polymer Composition vield /% Mw Stability / Tg
Polymer HOST | EAMA | PAG HOST EAMA PAG (PDI) e
HOST-EAMA blend 7.1 4500
F4-IBBS.TPS 40 60 45.8 54.2 (Wt%) 58.5 (2.5) 113.2
HOST-EAMA-F4- 3600
MBS.TPS 25 72.5 2.5 35.0 57.9 7.1 37.3 (1.6)
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LER for blend and polymer-bound PAG resists 9
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We believe this improvement is . . . . .
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- homogenous PAG distribution Veasurat-lingsien gl (A}

- reduced photoacid diffusion
S P B Polymer-bound PAG sample showed 50%

smaller 10 LER (1.05 nm) than the blend
one (1.60 nm). This result corresponds to
1.65 nm difference in the 30 LER .
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L essons Learned So Far 10
* Polymer-bound PAG Resists

— Binding anion to polymer reduces photoacid diffusivity substantially
while binding cation has little effect

— Bound-anion materials show significantly better LWR performance
than analodgous blended or cation-bound resists

- FCONCEPT:Combine the best of both eed
“solutions by making single component
* Molemolecular glass resists that contain

c

~ - PAG functionality directly in the

_ emolecule. 1
inconsistency in terpolymer polymerization

— Superior dissolution properties — each molecule in the glass is
identical, while in the polymer there is a distribution of molecular
weights and chain lengths; polymer chains can be partially-
deprotected

or
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From Blended Molecular Resiststo 1
Single Component Molecular Resists:
A Model Compound Proof of Concept
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Literature Molecular Glass Which can be made
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Synthesis of Triarylsulfonium (TAS)
Molecular Resist
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TAS-SbF, NMR 13
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TAS-SbF; NMR- Protection Levels

unsubstituted
/

43 |
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Tests reported here run on the highly substituted (i.e. highly protected) material
(57.4% tri-, 40.8% di-, 1.8% mono-protected).
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Comparison of Glass 3-D Structures

TAS appears to be less planar than other similar reported molecular glasses
Anion appears to possibly improve non-planar character
Structures obtained by MM2 method energy minimization
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Proof of PAG Activity S

 After synthesizing the TAS, it's imaging performance was compared to commercial
triphenylsulfonium triflate by using them both purely as PAGs in a fully protected
tris(4-tert-butoxycarbonyloxyphenyl)ethane molecular glass resist and comparing the
contrast curve using 248 nm UV light. The two PAGs perform similarly.
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Contact printed first
at DUV to verify
ability to image and
check PEB
conditions (100 C for
60 s).
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E-beam Patterning of TAS-SbF, Films?

100 nm 1:1 o 90 nm 1:1

200nm EHT = 3.00 kv Signal A =InLens Date :11 Oct 2006 300nm EHT = 3.00 kv Signal A = InLens Date :11 Oct 2008
Mag = 30.00 K X }—[ WD= 2mm Photo No. = 8009 Time :12:48:44 Mag = 30.00 KX |—{ WD= 1mm Photo No. = 8007 Time :12:39:11

80 nm 1:1

300nm EHT = 3.00 kv Signal A = InLens  Date :11 Oct 2008
Mag = 30.00 K X }_' WwWD= 1mm Photo No. = 8008 Time :12:40:21
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Etch Performance of TAS-SbF,

 Silicon oxide RIE halogenated etch (PlasmaTherm)

19

Etch Rate Normalized Etch
(nm/s) Rate
Novolac Resist 3.0 1
(Shipley 1813)
PHOST 4.1 1.37
TAS-SbF, 3.2 1.07

molecular glass
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Generation 2 Single Component 2o

Molecular Glass Resists:

Non-ionic PAG Functionalized Glasses
* Onium salt based PAG compounds have limited solubility in solvents
and triphenyl sulfonium core can fragment to produce benzene and
other products that can outgas.

« Non-ionic PAG functional groups are being explored to increase
solubility of compounds and lower outgassing.

« Oxime sulfonate based PAGs provide good flexibility for molecular
design. Since core remains essentially intact after exposure, also opens
easy routes to single component negative tone resists.
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Next Generation Non-lonic Molecular 21

Resist Examples

O0=S==0 O=T=O

! !
Weas WY on o8 s”
Negative Tone — cross-linked Postive Tone - deprotection

Negative-tone based on acid-
catalyzed lactone ring closing
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Tethering of Photoacid Anionto =
Molecular Glass Core

» Exploring chemistries to make tethered photoacid glasses.
» Exploring impact of tethering photoacid on resist sensitivity.
« Exploring impact of tehthering photoacid on catalytic chain

length.

OTO
0o
|

&ﬂ

A Near Zero Mass Loss Single Component Molecular Glass Resist.

Gy
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Conclusions 23
First examples of single component molecular
glass resists synthesized & demonstrated.

Onium salt system demonstrates basic feasibility
and shows good contrast, high sensitivity, high
resolution, and good etch performance.

Non-ionic PAG functionalized materials designed
and currently being synthesized.

Both positive and negative tone systems being
studied to understand advantages,
disadvantages, and capabilities.

LWR and ultimate resolution studies underway.

Gy
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Future Resist Performance Requirements 25

2005 International Technology Roadmap for Semiconductors (ITRS)

Year of Production 2005 2008 2007 2008 2009 2010 2011 2012 2013
DRAM ¥ pitch fnm) {contacted) 50 70 63 57 50 45 40 36 32
Flash ¥ pitch (nm) {un-contacted poly) 76 64 37 il 43 40 36 32 28
MPUASIC Metal 1 (M1} ¥: Pitch (nm){contacted) 20 78 a8 9 32 45 40 36 32
MPU physical gate length {nin) [after efch] 32 28 23 23 20 18 16 14 13
MPU gate in resist length (nm) 53 47 42 38 33 30 27 24 21
o T il = =~ 23 a1 19 w15
Resist thickness (nm, single layer) *#** 150-265 [ 125-225
PER temperature sensitivity (nm/C) 2 1.75
Lawﬁ*eguancg-‘ line widih roughness: 4.7 3.8
(i, 3 sigma) < 8% gf CD #F+==

Exposure Technology Sensitivity Manufacturable solutions exisi, and are being optfimized
248 nm 10=50 mJ/ Cm.’l Manufacturable solufions are known
193 nm 20-50 mJ/ sz Interim solutions are knewn |4
SN 515 m1] sz Manufacturable solutions are NOT known _
High Ioltage Electron Beam (50-100 k17) ®*%*= 5-10 pCi cmz
Low Toltage Electron Beam (1-2 kT7) =##* 0.2-1.0 pC/ r_;m2 ITRS L|thograp hy 2005

Requirements for NGL resist materials (including EUV) are:

W High sensitivity (absorbance, quantum efficiency, catalytic chain length).
B High resolution (acid diffusion).
B Low line width variation (acid diffusion, homogeneity of material). @

(intel'
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Spatial-frequency dependent LER for 26
EUV blend and polymer bound PAG samples

B i 1.60 nm —'—HE blend F4- IBBS TPS
e " ——HE-F4-MBS.TPS

o LER (nm)
o LER (nmy}

04| ——HE blend F4-IBBS.TPS
——HE-F4-MBS.TPS

0-2 1 L L : h L 1 1 1 1 1 1
0 50 100 150 200 250 300 350 1% 50 100 150 200 250 300 350
Measured line length L (nm) Measurement pitch (hm)
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Spatial-frequency dependent LER for 27
EUV blend and polymer-bound PAG samples

Height-height correlation Power spectra (DFT)
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B Blend sample showed smoother high-frequency LER (smaller roughness exponent) and
shorter correlation length (shorter line length over which the LER becomes independent
of measured line length).

B Low spatial-frequency components are most significant for LER in both samples.

Gy
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28

DUV Contrast Curve of Pure TAS Films

« Sensitivity and contrast of a pure 100 nm thick TAS film was tested using 248
nm UV light, with a PEB of 100°C for 60 seconds

100 2

90 -
? 80 | CONTRAST =3.5
O+ = 70 SENSITIVITY = 5.9 mJ/cm?
£ <
S o E 60 -
= £ & 50 _
= CONTRAST =4.8
c g 2 40 SENSITIVITY = 8.1 mJ/cm?
T EQ 30 e
o X 20

10 -

0 T = » .

0 5 10 15 20
Exposure Dose (mJ/cm?2)
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Basis for Design of a Model Single i

Component Molecular Glass Resist

Many molecular glasses are made of star-shaped
molecules with a phenyl rings extending from a common
core. This looks very similar to triphenylsulfonium. Thus
is was thought a functionalized triphenylsulfonium core
would probably be able to form amorphous films and
function directly as a resist.

It was also desired to incorporate an acid-catalyzed
solubility switch into the compound. This would be
suitably achieved using phenolic hydroxyl groups
protected using t-Boc or other similar groups.

The t-Boc unit was also thought to be able to prevent
crystalline packing, forcing the molecule to be
amorphous.
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