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Abstract

One of the critical issues within EUVL is mirror lifetime and the degradation due to
debris from the EUV pinch. This research modeled and experimentally measured the
mitigation of Li debris from collecting on the surface of EUV-like optics through the
combined use of a He secondary plasma, evaporation from optic materials at elevated
temperatures, and preferential sputtering off of the optic material. Helium was chosen
as the secondary plasma because of its high EUV transmission, 98%, at 13.5 nm and a
preferential sputtering yield for lithium over mirror materials at low energies. This
applied research expanded the current knowledge base in understanding lithium
interactions with a He plasma and optic surfaces by constructing an experimental
device that demonstrated that the application of a secondary plasma source around the
surface of mirror optics contaminated with low-energy sputtered material was able to
remove a significant fraction of lithium and contaminant material is removed.
Concurrently, an analytical model was developed to give predictive values of
contamination buildup on mirror optics for other related systems. The helium plasma
had a temperature of 4.7 + .5 eV and an electron density of 1 x 10%° cm®2.  lon flux to
the mirror optic sample was on the order of 1047 He ions/sec. While the addition of
heating the mirror optic to 400° C alone and the addition of He ion flux to the surface
alone showed some promise in removal of Li debris from the surface of the optic the
resulting surface roughness were on the order of 25-60 nm while the as received mirror
optic sample had an as received surface roughness of 2.9 + .5 nm. However, with the
addition of heat and increased He ion flux to the surface together, this resulted in mirror
surface having less surface roughness, 1.0 + .5 nm and a minimal amount of Li debris
present on the surface. This work demonstrates the viability of employing a secondary
He plasma around the mirror optics to prolong the lifetime of the collector optics in situ
with minimal EUV transmission loss.

Motivation for Li

+Debris from the plasma source is the critical issue.

+Fast ions generated in the pinch can lead to
significant collector erosion.
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+Multifunctional device capable of creating lithium debris conditions incident upon EUV

optic materials so as to develop a model of lithium transport and operating regimes that

will aid in the advancement of EUV mirror lifetime optics.
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Why He as the secondary plasma?
*High EUV transmission (at 10 mTorr)
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«Preferential sputtering of L| over EUV mirror optic capping materials
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Modeling based off of SRIM.

Preliminary Investigation

Initial experiments with the use of secondary He plasma were performed to study the
mitigation and removal of Lithium debris from mirror optics and the correlation to the
initial model.
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~Sample 1 s the baseline case.

~Sample 2 illustrates the effect of He* flux onto the mirror optic sample.
+sample 3 illustrates the effect of increased He flux onto the mirror sample
~Sample 4 illustrates the effects of heating alone.

+sample 5 illustrates the effects of heating and additional He* flux onto the mirror optic
sample.
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Solution to an industry problem Thls illustrates that lhe useofa
secondary He plasma demonstrates possible in situ EUV optics
cleaning!

More modeling and predictive nature needs to be determined,
though, both for academia and industry.

Initial Model Development
Lithium debris at the surface of the mirror optic is governed by three competing
processes: Ry = Ry = Ry =Ry,
R - Daposnon rate of Li detes on the meroe opos serface
ey~ trorm the magratsn (i)
PR TR ——
St * wirtace ]
N Evaporaton ate of L debrin of of the srser oot
Fvap m- =

R, ot depeaisen st on the meree ot surties i)

Ry = frag 01 o

g SO

ymposium, Barcelona, Spain, October 2006
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