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Rationale
• Mask cleaning processes can be more 

quickly optimized if the magnitude of 
particle-mask adhesion forces known

• Mask layers and contaminants offering 
most difficult cleaning challenge can be 
identified

• Effects of solution properties on 
contaminant adhesion can be evaluated

• Range of adhesion forces for given 
contaminant/mask layer can be determined
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Particle Characteristics

5 μm

5 μm

Alumina Particle

• Ideal geometries 
• Can model contact area using classic 

approaches
• Contact mechanics (JKR, DMT…)
• DLVO

• Uniform microscopic morphology
• Empirical, semi-empirical 

approaches

• Unusual geometry
• Random microscopic morphology
• Compression/deformation of 

surface asperities
• Chemical heterogeneities
• Settling (tilting, shifting)
• Statistical information
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Macroscopic Adhesion Model: DLVO Theory
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A = System Hamaker constant
d = Particle diameter
a = Contact radius
h = Particle-surface separation distance
ε = Medium dielectric constant
ζ = Zeta potential
κ = Reciprocal double-layer thickness
I = Medium ionic strength
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Electrostatic Double Layer (EDL) Force
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van der Waals (vdW) Force
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Distribution of Forces
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Surface Roughness and Adhesion
5 μm PSL spheres in contact with 

a silicon substrate in 0.03 M KNO3

Removal Force = Adhesion Force
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Geometry and Adhesion
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Alumina Interactions with SiO2
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Electrostatic interactions do affect the adhesion force, which varies with pH
Large area between particle and wafer out of contact
Small contact area
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How to Describe?
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Combined vdW, ES Interaction Models

Compression/DeformationCompression/Deformation

SEM
(Geometry)

vdW + EDL ModelvdW + EDL Model

AFM
(Topographic Data)

Generate Mathematical
Surface Representations
Generate Mathematical

Surface Representations

Contact SurfacesContact Surfaces

Lo
ad

 (m
N

)

force/depth 
profile

AFM Force MeasurementsAFM Force Measurements

3-D 
Reconstruction

ζ 
(mV) pH

IEP

Surface Potential

Removal Force StatisticsRemoval Force Statistics

Applied LoadApplied Load



School of  Chemical Engineering

Geometric Models
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FFT Roughness Model

AFM scan of actual Cu surface FFT model Cu surface

F(x)

2πx

• Fourier transform of surface 
profile

• Reconstruction of surfaces 
generated with random phase 
angles

FFT with random phase
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Validation: PSL Adhesion to Evolving Surfaces 
Only vdW forces needed to describe adhesion

Rough Silicon 
Surface

Average Measured 
Value  127 nN
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PSL Interactions with SiO2
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• Electrostatic interactions do not have a significant effect at different pHs
• Large contact area between sphere and wafer dominated by vdW
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Alumina Interactions with SiO2
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Electrostatic interactions do affect the adhesion force, which varies with pH
Large area between particle and wafer out of contact
Small contact area
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Nanoscale Adhesion Approach
• Measure, model micron-

scale adhesion

• Extract vdW, ES constants

• Measure nano-scale adhesion

• Model adhesion using constants 
from micron-scale

• Can measure nano-scale adhesion

• Can model roughness and geometry effects

• Can predict nano-scale adhesion
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Silicon Dioxide Surface

AFM Image FFT model Regeneration
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Silicon Nitride Particle: Micron-Scale

FESEM image of a Si3N4 particle 
mounted on an AFM cantilever

Photomodeler Pro® model for the 
nitride particle
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Silicon Nitride Cantilevers: Nanoscale
Sharpened silicon 
nitride probe

Max ROC ~ 40nm

~2 μm~10nm

Region considered in force 
calculations

Geometry considered in modeling the 
force between nanoscale cantilevers 
and substrates
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Silicon Nitride Adhesion to Silicon Dioxide in Air

Tip ROC=12nm Tip ROC=36nm
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Silicon Nitride Adhesion to Silicon Dioxide in Water

Tip ROC=10nm Tip ROC=41nm
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Silicon Nitride Adhesion to Quartz in Air

Tip ROC=14nm Tip ROC=32nm
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Silicon Nitride Adhesion to Quartz in Water

Tip ROC=14nm Tip ROC=32nm



School of  Chemical Engineering

Theory and Experiment: Silicon Nitride 
Adhesion to Silicon Dioxide in Air
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Theory and Experiment: Silicon Nitride 
Adhesion to Silicon Dioxide in Water
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Theory and Experiment: Silicon Nitride 
Adhesion to Quartz in Air
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Conclusions

• Micron- and nano-scale particle adhesion can be 
described by vdW and electrostatic force models

• Proper accounting for roughness and geometry 
is required

• Particle adhesion characterized by a distribution 
of adhesion forces
– Reflective of the interaction of two rough surfaces

• Particles with highly nonuniform geometry can 
be influenced by electrostatic forces even when 
in contact with a substrate
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