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OutlineOutline

Interaction of H2O with 
clean, O-covered and C-
covered surfaces
focus on H2O /Ru(1010),
adsorption, desorption, 
reaction

Electron-stimulated surface 
processes
desorption, dissociation, 
oxidation; H2O on 
Ru(0001)and Ru(1010)

Atomic structure of Ru surfaces
in some capping layers

(close packed)

(atomically rough)

(1010) B(1010) B

(1010) A(1010) A

(0001)(0001)

The (0001) and (1010)  faces of an ideal hcp
crystal – possible surfaces in capping layers
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Thermochemical predictions for stability of 
water on metal surfaces

Ti V Cr Mn Fe Co Ni Cu Zn

Zr Nb Mo Tc Ru Rh Pd Ag Cd

Hf Ta W Re Os Ir Pt Au Hg

Dissociation

Borderline  case

Molecular adsorption

For borderline cases partial dissociation may occur
(Thiel and Madey,1987)



Our main method:  temperature 
programmed desorption (TPD)

Our main method:  temperature 
programmed desorption (TPD)

*clean surface of sample,

*dose gas (H2O)

*heat sample at linear rate ( ~ 2 to 5 K/s), 

*measure desorption spectrum with mass 
spectrometer,

*determine energies, lifetimes (from  peak  
temperatures)



TPD of H2O from clean Ru(1010) TPD of H2O from clean Ru(1010) 
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TPD of water from two different Ru
surfaces (0001) and (1010)

TPD of water from two different Ru
surfaces (0001) and (1010)
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0.4 ms

1.2 ms

Lifetime τ
at Τ=300Κ

2 × 10-4 ML0.66 eV225 Ksimulation

6 × 10-4 ML0.60 eV225 Kestimation

Coverage θ
at 

1 x 10-6 torr

Activation
energy  

Ed

T (peak)
clean 

Ru (1010)
surface

Surface lifetimeSurface lifetime
Relevant for EUV 
mirror degradation:

- activation energies

- surface lifetimes

- coverages 

Redhead eqn: Ed = kBTmax(ln[νTmax/β] – 3.64)

First order desorption: ν ~ kBT/h ~1 × 1013 s-1

(assumed)

Surface lifetime: τ = ν-1 exp(Ed/RT)

Coverage in ML: θ = 0.5 × 106 × p × S × τ
For H2O
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Surface lifetime of more reactive dissociation products is short, but may be 
long enough to cause radiation-induced chemical reactions

p in Torr, S sticking coefficient ~1



Detection of Carbon      
on Ru

Detection of Carbon      
on Ru

To measure onset of C reactions, a 
sensitive spectrometry is needed: 
low energy ion scattering (LEIS)

Carbon growth may inhibit oxidation –
but a carbon monolayer on Ru is hard 
to detect in XPS



TPD of water from contaminated RuTPD of water from contaminated Ru

125 150 175 200 225 250 275 300
Q

M
S

 s
ig

na
l f

or
 1

8 
am

u 
(H

2O
+ )

H2O coverages
      0.14 ML
      0.12 ML
      0.05 ML
      0.04 ML

120 140 160 180 200 220 240

 
Q

M
S

 s
ig

na
l f

or
 2

0a
m

u 
(D

2O
+ )

D2O coverages
       0.8 ML
       0.6 ML
       0.3 ML

TPD of water from air - exposed Ru(1010)

Temperature, K

Binding energy and lifetimes of water on O-covered and 
C-covered surfaces less than on clean Ru (τ ~10-5 s)

TPD of water from 80% carbon-covered Ru(1010)

Temperature, K

_ _



Intermediate conclusionsIntermediate conclusions

• Water adsorbs molecularly and dissociatively on       
Ru(1010), Ru(0001)

•Surface lifetimes short, < ms  time scale

•Carbon, oxygen impurities cause decrease in 
H2O binding energies, and surface lifetimes

•Next: Investigations on the influence of electron 
irradiation

_



What do eWhat do e--beams and EUV do to water on beams and EUV do to water on 
RuRu??

EUV

e-beam

e-

Secondary irradiation source: 
photo- and secondary electrons

Primary irradiation sources:

Our goal → to quantify beam damage in water layer on  Ru



Low-energy processes are 
particularly important, but not 
well-understood.

At low energies (0-10 eV), 
dissociative electron 
attachment (DEA) resonances, 
and excited state (exciton) 
formation.

At higher energies, dipolar 
dissociation (DD) & 
dissociative ionization (DI) 
contribute

Importance of  low energy Importance of  low energy ““secondarysecondary”” electrons electrons 
in ein e-- and and hhvv irradiationirradiation

T. M. Orlando and D. Meisel, Chapter 17, 2001, ACS Symp. Series 778



ElectronElectron--induced dissociation of induced dissociation of 
water/Ru(0001):water/Ru(0001): threshold measurementsthreshold measurements
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Threshold energies are in the range 0 ~ 2eV

(Faradzhev et al.,Chem. Phys. Lett. 415 (2005) 165)



ElectronElectron--induced dissociation of induced dissociation of 
water/Ru(0001):water/Ru(0001):

cross section measurementscross section measurements
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The “slow” process includes desorption & full dissociation to O + H
(Faradzhev et al., Chem. Phys. Lett. 415 (2005) 165)
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On Ru(1010), similar effects for electronOn Ru(1010), similar effects for electron--
induced dissociation of Hinduced dissociation of H22OO

• Bombard ~2ML H2O with 100 eV electrons
• Thermally desorb all H2O (TPD), measure residual O using LEIS
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SummarySummarySummary

• Water adsorbs molecularly and dissociatively on           
Ru(1010), Ru(0001)

•Surface lifetimes short, < ms  time scale

•Carbon, oxygen impurities reduce water binding energy, 
lifetimes

•Thresholds for e- - induced dissociation low, a few eV

•Electron - induced dissociation processes on Ru include

fast:     e- + H2O H + OH
s l o w: e- + OH O + H

_



Thank you!
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