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Mass-limited target regime — mass of tin within droplet limited to the number
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of atomic radiators heated by the laser —typically ~ 1013 atoms per droplet.
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30 kHz stable laser irradiation demonstrated Shifting mirror reflectivity by 0.1 nm
, simultaneous measurements; increases CE by 12%
Laser shoots every droplet! o CCETD, (25 G,
and EUV energy. Flat Field
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Low cost architectures for SS laser source Repeller Field
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Repeller field captures Plasma source
anything charged -
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Collection mirror + source $1.0M - $1.5M
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Repeller field red:  of lon Negligible erosion of materials
Laser costs: (10kW) - f"e er field reduces # of jons Neutral atom mitigation expected
~1 order of magnitude for Tin
(a) GA Liquid Laser ~$2M
(b) 100 kHz Fiber Laser ~$1M

Two mitigation approaches
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Long term 30 kHz laser- droplet irradiation demonstrated — 100% fuel consumption
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Mirror erosion estimated by measured ion emission characteristics — Factor of 50

Advanced mitigation combined with Repeller field — Satisfy lifetime requirement %
EUV Monitor High NA

Cost effective laser plasma source modeled configuration|
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