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Consider following energy losses
  ･ kinetic energy loss due to expansion, Ek
  ・ ionization loss, Ei
  ・ radiation loss, ER ,
and assume a sum of the losses equals
to laser flux.

    IL= Ek +  Ei + ER
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Power Balance Model of EUV-LPP presented at EUVL03, Antwerp

   Ek = 3 Z*(ni ,Te) ni Te  cs , 
   Ei =  Ei ( ni ,Te  , Z*(ni ,Te) ) ni cs , 
   ER=  PR( ni ,Te  ) cs τL/ α ,

where Z* : ionization state, Ei : ionization energy, 
 PR : emissivity,   α ( ? 1.35(total), 1.1(EUV) ) : PR ∝  ni

α,
 ( atomic data and atomic physics !!!!! )
 cs : sound speed,  τL : laser pulse duration,    

Assume isothermal expansion in corona
    n = no exp( - x/cst ),  v = cs + x/t

IL = 1011 W/cm2

τL = 1.2 ns
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Theoretical conversion efficiency obtained from the power balance model
 agrees fairly well with the experiments with tin, 
 that CE 3% is achieved at 5x1010 - 1011 W/cm2.

Those results indicate that the source parameters 
for practical use can be achieved. 

EUV power
at intermediate focus point
    PEUV = ηEUV S IL τEUV εtotal Rp
            = 280 W

laser intensity : IL = 1011 W/cm2,
pulse width :     τEUV = 5 ns,
repetition rate : Rp = 10 kHz ,
plasma size ( εt = 3 mm２str ) :
                           φ ≈870µm
conversion efficiency :
                           ηEUV = 0.03
efficiency of focusing system :
             εtotal = εΩ εR εte εtd = 0.32
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Power balance model indicates relatively weak dependence
of the conversion efficiency on laser wavelength for tin,
which suggests the use of CO2 laser. 

iso-contour of the conversion efficiency
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laser pulse
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For Xe, high conversion efficiency appears at relatively high
density
due to less re-absorption in corona, compared with Sn.

This suggests relatively longer pulse can be used for Xe compared to Sn
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Observation of EUV emission from Xe 
in charge exchanging collision with rare gas atoms (TMU/OsakaU)

Photon emission spectroscopy : 
           Xe+q + ( He, Ar, Xe)  
             Xe+q-1 ( n, l )  
             Xe+q-1 ( n’, l’ ) + hν
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H. Tanuma (SoP32), A. Sasaki (SoP52), H. Koike (SoP48)

Experimental wavelengths qualitatively agree with calculation, 
but not exactly for 4d – 4f transitions
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calculated and observed spectra show 
reasonable agreement of wavelength of 
4d-5p transition array of Xe10+.
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H. Koike (SoP48), A. Sasaki (SoP52)

Configuration interaction is important : [ 4d+4f ←→ 4d+4p]

The narrowing of 4f-4d spectra pointed out by O’Sullivan is refined 
with use of GRASP and HULLAC  (Sn+12)

HULLAC

GRASP
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Both opacity and satellite lines play important roles in LPP.
( Xe plasma with 4d-4f, 4p-4d and 4d-5p satellite lines )

plasma parameters
   Te=25eV
   ne=1021/cm3

   r=10µm

no satellites

Sasaki (SoP52)

experiment by EUVA 



Outline of talk
・　power balance model and conversion efficiency
         laser wavelength, pulse duration, tin and xenon
・　improvement of atomic models
         Xe energy level, configuration interaction, opacity
・　comparsion with experiments 
         EUV spectra, electron density profile, fast ion



Application of atomic data calculated by the HULLAC
or Average Atom with n, l splitting to the modeling of the EUV source

HULLAC / AA
collisional
radiative model

radiation hydro-
dynamics code

• energy levels
• oscillator strength
• collisional cross sections

• emissivity
• opacity
• equation of state (EOS)

assignment of
emission lines

estimation of efficiency
optimization

HULLAC / CRE: Sasaki,    AA / CRE: Nishikawa,   
EOS: Furukawa,                R-Hydro: Sunahara



Radiation hydrodynamic simulation predicts that
radiation spectra may drastically change with laser intensity,
which agrees well with the experiments.
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Measured EUV
emission
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Electron density in EUV emission region measured by Y. Tao et al 
roughly agrees with simulation.

Tao (SoP30), Sunahara (SoP52)



Opacity measurements of Sn plasmas
heated by thermal radiation (TR = 50 eV) are in progress.

Sn Opacity

Al Opacity

13.5 nm

Dog-bone gold cavity

Opacity sample
(Sn or Al with CH tamper)

Sn plate 
for probing x-ray source

Thermal radiation
(TR = 50 eV)
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After Nishimura, Fujioka, Okuno et al 
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Conclusion　

KN040119-1

・Based on the power balance, we present a scaling low of the conversion
   efficiency, which agrees fairly well with the experiments, and discussed
   its dependence of laser wavelength and pulse duration for tin and xenon.
・ Improvement of atomic modeling is in progress, such as on identification
   of energy levels with various experiments, configuration interaction 
   and opacity.
・ Detail comparisons between simulations and experiments provide us
   useful knowledge of LPP-EUV for future design. 

Those results indicate that the source parameters 
for practical use can be achieved. 

EUV power at intermediate focus point
            PEUV = ηEUV S IL τEUV εΩ εR εte εtd Rp = 280 W
laser intensity : IL = 1011 W/cm2,      pulse width :  τEUV = 5 ns
repetition rate :   Rp = 10 kHz ,  plasma size ( εt = 3 mm２str ) : φ ≈870µm
conversion efficiency : ηEUV = 0.03
efficiency of focusing system :  εtotal = εΩ εR εte εtd = 0.32


