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Requirements for EUV Resists
1.sensitivity, 2.space resolution, 3.LER, 4.shot noise

Without understanding the details of the reaction mechanisms of
chemically amplified resists, it is impossible to develop EUV
resists which meet the strict requirements for mass production.
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EB can be focused less than 1 nm. However, technical barriers exist
around 30 nm for mass production type resist patterns. Why?
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Chemically amplified resist

Generation of acid by exposure
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Acid Generation Reaction Mechanism Induced by lonizing
Radiation in Triphenylsulfonium triflate Solution
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Electron dynamics in early processes of radiation chemistry
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w : Probability density of electrons r : Distance between radical cation

Kg : Boltzmann constant and electron

V : Coulomb potential I, : Initial separation distance

T : Absolute temperature on average

D : Sum of diffusion coefficient



Acid generation mechanism — lonization channel
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Reaction control in nanospace --Time space translation

A. Saeki et al. Jpn. J. Appl. Phys. 41 (2002) 4213.
It is essential to minimize the displacement between energy deposition point and reaction point.
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Spatial separation between electron and
cation radical causes the displacement
between energy deposition point and
reaction point. For the nanotechnology, it
Is essential to decrease the displacement.
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Formulation

The reaction of acid generators with electrons:
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Effective reaction radius of acid generators:
k =472RD
Electron dynamics in resist materials:
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w : probability density of electrons

K : rate constant of reaction of acid generator with electrons
C : concentration of acid generators

R : effective reaction radius
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Effective reaction radii of acid generators

k =47RD

R : Effective reaction radius of acid generators
D : Diffusion coefficient of solvated electrons in methanol (1.5 x 10-° m2s-1)
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k : Rate constant of reaction of acid generators with solvated electron in methanol



The evolution of counter anion distribution
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. The evolution of counter anion distribution calculated with the parameters: the
concentration of acid generator, C = 5 wt. %, the initial separation distance, r, = 4 nm,
the dielectric constant, & = 4, the effective reaction radius, R = 2.4 nm. Dt/r,? is a non-
dimensional parameter and represents time. The vertical axis represents the probability
density of electrons per unit distance. The probability is spherically integrated. The time
step (ADt/r,?) between each line is 0.005 and the maximum time (Dt/r,?) is 0.16.



Counter anion distribution around ionization point
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Relative acid yield
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Fig. 4 The relation between relative acid yield and protection ratio of hydroxyl
groups by adamantyl groups.



Proton dynamics in chemically amplified resists

Proton is generated here

according to deprotonation
efficiency of radical cation
of base polymer.

Counter anion does not move.
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http://www.sun.co.jp/ws/sunblade1000/index.html

Conclusion

1. The energy deposition point and acid formation point are
different.

2. The elucidation of the reaction mechanisms of chemically
amplified resists Is very important in the development of the
resists with at least both high sensitivity and high space
resolution.

3. Our findings are integrated to a simulation model. This
model is applicable to exposure souses whish have higher
energy than ionization potential of resist materials. The
probability density of acid distribution around ionization
point was simulated with a typical parameter set.

Further work should be down for total scheme of EUV
resists.
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