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Requirements for EUV Resists
1.sensitivity, 2.space resolution, 3.LER, 4.shot noise

Without understanding the details of the reaction mechanisms of 
chemically amplified resists, it is impossible to develop EUV
resists which meet the strict requirements for mass production.



Sensitivity
and

Nanoscale Topology of Resist Patterns 
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scattered electrons
Reaction 
mechanisms

Kinds of developer, Development 
conditions, Intermolecular forces 
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Polymer size effects
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Distribution of 
secondary electrons

Acid diffusion

　EB can be focused less than 1 nm. However, technical barriers exist 
around 30 nm for mass production type resist patterns. Why?



Energy deposition point and reaction point 
are different. 
One EUV Light: Ionization:4~6, Excitation:1~2

Acid generation yields: 1~3
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Our Idea:



Chemically amplified resist
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Acid Generation Reaction Mechanism Induced by Ionizing Acid Generation Reaction Mechanism Induced by Ionizing 
Radiation in Radiation in TriphenylsulfoniumTriphenylsulfonium triflatetriflate SolutionSolution
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Electron dynamics in early processes of radiation chemistry
Electron with 
excess energy
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w : Probability density of electrons
kB : Boltzmann constant
V : Coulomb potential
T : Absolute temperature
D : Sum of diffusion coefficient
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Acid generation mechanism Acid generation mechanism –– Ionization channelIonization channel

Electron beam, X-ray, EUV

Ionization

Acid diffusion

Acid generation

Proton transfer

Proton generation
Base polymer

Acid generator

Counter anion

Proton

Electron
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Time-space translation
Translation of picosecond temporal 
data to nanometer spatial data
（So far, available only at ISIR）

Reaction control in nanospace  --Time space translation
A. Saeki et al. Jpn. J. Appl. Phys. 41 (2002) 4213.
It is essential to minimize the displacement between energy deposition point and reaction point.

Experimental data obtained in 
the femtosecond pulse 
radiolysis and simulation

After exposure to EB

Change of distance between electron and 
cation radical generated by electron beam 
irradiation. 

Spatial separation between electron and 
cation radical causes the displacement 
between energy deposition point and 
reaction point. For the nanotechnology, it 
is essential to decrease the displacement.

r0 = 6.6 nm
D = 6.4 x 10-4cm2/s
e = 2.012



Formulation

The reaction of acid generators with electrons:
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Effective reaction radius of acid generators:
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Electron dynamics in resist materials:
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w : probability density of electrons
k : rate constant of reaction of acid generator with electrons
C : concentration of acid generators
R : effective reaction radius



Femtosecond laser system 
in clean room
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Effective reaction radii of acid generators
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D : Diffusion coefficient of solvated electrons in methanol (1.5 x 10-9 m2s-1)
k : Rate constant of reaction of acid generators with solvated electron in methanol

R : Effective reaction radius of acid generators



The evolution of counter anion distribution
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.  The evolution of counter anion distribution calculated with the parameters: the 
concentration of acid generator, C = 5 wt. %, the initial separation distance, r0 = 4 nm, 
the dielectric constant, ε = 4, the effective reaction radius, R = 2.4 nm. Dt/r0

2 is a non-
dimensional parameter and represents time. The vertical axis represents the probability 
density of electrons per unit distance. The probability is spherically integrated. The time 
step (∆Dt/r0

2) between each line is 0.005 and the maximum time (Dt/r0
2) is 0.16.
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Total yield: 0.68



Counter anion distribution around ionization point
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The distribution of probability density of 
counter anions in the x-y plane. The 
coordination of ionization point is the 
origin. 
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Fig. 4 The relation between relative acid yield and protection ratio of hydroxyl 
groups by adamantyl groups. 
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Proton dynamics in chemically amplified resists
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Proton is generated here 
according to deprotonation
efficiency of radical cation
of base polymer.

Counter anion does not move. 
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Sensitivity
and

Nanoscale Topology of Resist Patterns 

hν (13.5 nm)

ionization

excitation

Energy deposition point and 
reaction point are different. 

Reaction 
mechanisms

ionization        acid distribution      acid diffusion 

Old Idea:

Our Idea:



75 and 30 keV EB Exposure 
Systems and FIB Suystems

Reaction Mechanisms
Pulse Radiolysys System 

Design, Synthesis, and 
Characterization of Materials

Simulation

Co-operation

Resist Research in Tagawa Lab.

http://www.sun.co.jp/ws/sunblade1000/index.html


Conclusion
1. The energy deposition point and acid formation point are 
different.
2. The elucidation of the reaction mechanisms of chemically 
amplified resists is very important in the development of the 
resists with at least both high sensitivity and high space 
resolution. 
3. Our findings are integrated to a simulation model. This 
model is applicable to exposure souses whish have higher 
energy than ionization potential of resist materials. The 
probability density of acid distribution around ionization 
point was simulated with a typical parameter set.

Further work should be down for total scheme of EUV 
resists.
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