

Screening of oxidation resistant capping layers for EUV multilayers

Saša Bajt

Erik J. Nelson, Zurong Dai, Giles A. Graham, Jennifer Alameda, Sherry Baker, Nhan Nguyen, Cheryl Evans, Art J. Nelson, John S. Taylor,

Lawrence Livermore National Laboratory

Miles Clift, Dean Buchenauer

Sandia National Laboratories

Andy Aquila, Eric M. Gullikson

Lawrence Berkeley National Laboratory

and

N. V. Ginger Edwards, Stefan Wurm and Obert Wood *SEMATECH*

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. This project is supported by SEMATECH under Project LITH 160.

SEMATECH LITH160 – Projection Optics Lifetime Project Plan Experimental: ML testing methodology & benchmarking **- Complete - In Progress Europe ML - Planned Lifetime Tests Benchmarking - Not Funded Data Japan Lifetime Tests Sample Testing Characterization Ru capped MLs Sandia Methodology Postmortem E-beam Exposures Experimental screened Scaling Scaling Data NIST Behavior** 1 **EUV Exposures Other cap layers Fundamental screened Understanding Rutgers Comparison** Δ'n, **Modeling of Simulation vs. Ru Oxidation Experiment Degradation Parametric MechanismsDependencies Simulated Oxidation Data Modeling: Fundamental understanding and parameter scaling Material Properties**

Screening tests overview

Multilayer Selection Criteria

Functional requirement: Capping layer requirements:

- Long term stability EUV multilayers
- Impervious to diffusion of oxygen
- Limited thickness
- Complete coverage
- Chemically inert to the material underneath
- Thermally stable

lith the exception of Ru all these materials were only screened, not optimized for EUVL applicatio

Multilayer 1 Sample Set Details

ML1 EUV Reflectivity

- Candidate for accelerated life-testing protocol development needed
- ML1 was a large set of candidate **samples**
- Deposition parameters strongly influenced EUV reflectivity & lifetime response
- Sample with best combination of reflectivity, thermal stability, and e-beam lifetime chosen

Preparation 1 (power change) **Preparation 4, 5 and 6** (gas mixture variation) **Preparation 7** (material variation)

*

Exposure = electron beam exposure; 1 KeV; 5mA/ mm2; 5 x 10-7 Torr water; Time = 40 hours

High lifetime of ML1 (Prep 1) is associated with a dense, crystalline capping layer

National Laboratory

EUV reflectivity is one of the selection criteria for capping layer candidates

Annealed Pd-capped MLs show high reflectivity loss with notable period change

Thermal annealing considerably increased surface roughness of Pd- and PdAu-capped MLs

What is the cause of the reflectance drop in these materials?

Large variation in reflectance drop for different capping layer materials suggests different degradation mechanisms

Surface roughness in e-beam exposed areas of Pdand PdAu-capped MLs increased dramatically

Exposed areas in Pd and PdAu-capped MLs show increase in oxygen peak

Pd-capped multilayer **PdAu-capped multilayer** PdAu-capped multilayer

Depth Auger profiles reveal diffusion barrier breakdown in the e-beam exposed areas

Cross section TEM image clearly shows coverage problems on PdAu-capped multilayer

Laboratory

Oxidation mechanism in Pd-capped multilayers

- Pd island growth
- Pd oxidation
- \bullet Expansion of SiO $_2$ into spaces between islands
- Oxidation of Si and Mo layers underneath

Similar mechanism expected in PdAu-capped multilayers

Oxidation mechanism in SiC-capped multilayers

- SiC converts to $\text{SiO}_2 + \text{C} + \text{CO}(g)$
- \bullet $\,$ O diffuses into SiC, CO gas escapes through SiO $_{2}$, C left at interface
- M. Di Ventra and S. T. Pantelides, Phys. Rev. Lett. **83**, 1624 (1999).

Oxidation mechanism in MoSi² -capped multilayers

- Oxidation accelerated by non-stoichiometry, defects
- \bullet $\,$ Protective SiO $_{2}$ formation on smooth stoichiometric surface, no MoO $_{3}$
- \bullet $\,$ MoO $_{3}$ and SiO $_{2}$ formation starts at defects (pores, cracks)
- Volume increase at defects -> pesting

Oxidation mechanism in YSZ-capped multilayers

- Yttria-stabilized Zirconia (YSZ) unchanged
- Y stabilizes fluorite structure and introduces vacancies – 3% Y doping makes 0.75% of O sites vacant
- Mobile vacancies -> Enhanced oxygen diffusion in YSZ
- Oxidation of Si and Mo layers underneath

XPS and depth Auger results summary

Non-destructive XPS technique was used to obtain local chemical environment analyzing up to 5 nm into the multilayer

Summary

- **Fabricated and pre-screened ML1 and ML2 samples. No capping layer development efforts were funded.**
- • **Oxidation/EUV reflectivity degradation mechanisms determined for selection of novel capping layer materials for EUV multilayer mirrors.**
- • **Ruthenium capping layer still a leading candidate for oxidation protection. Further improvements are required, however, need fundamental understanding of Ru surface science.**
- • **The differences in the mechanisms demonstrate that test protocols will have materials dependence that cannot be ignored.**

