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Experimental: ML testing methodology & benchmarking 
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Screening tests overview
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Multilayer Selection Criteria

Functional requirement: 
Capping layer requirements: 

EUV reflectivity, optical constants

Noble metals and alloys
(Ru, Pd, PdAu)

Ceramics
(SiC, MoSi2, YSZ)

• Long term stability EUV multilayers
• Impervious to diffusion of oxygen
• Limited thickness
• Complete coverage
• Chemically inert  to the material underneath
• Thermally stable

With the exception of Ru all these materials were only screened, not optimized for EUVL application.
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Multilayer 1 Sample Set Details

Preparation 1 (power change)
Preparation 4, 5 and 6 (gas mixture variation)
Preparation 7 (material variation)
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• Candidate for accelerated life-testing
protocol development needed

• ML1 was a large set of candidate
samples

• Deposition parameters strongly
influenced EUV reflectivity & lifetime
response

• Sample with best combination of
reflectivity, thermal stability, and e-beam
lifetime chosen

ML1 EUV Reflectivity

*

*Exposure = electron beam exposure; 1 KeV;
5µA/ mm2; 5 x 10-7 Torr water; Time = 40 hours



S. Bajt et al., Lawrence Livermore National Laboratory 2004 EUVL Symposium

5 nm5 nm
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High lifetime of ML1 (Prep 1) is associated with a
dense, crystalline capping layer

More results on the lifetime performance in
PO Contamination Workshop
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EUV reflectivity is one of the selection criteria for
capping layer candidates

RuRu benchmark benchmark
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Annealed Pd-capped MLs show high reflectivity
loss with notable period change

Pd- and PdAu-capped MLs show significantly
larger period change than other multilayers
although all of them consists of the same
Mo/Si stack with 50 bilayers.

Multilayers exposed to 200ºC for 30 minutes
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Thermal annealing considerably increased
surface roughness of Pd- and PdAu-capped MLs
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What is the cause of the reflectance drop in
these materials?

Large variation in reflectance drop for
different capping layer materials
suggests different degradation
mechanisms
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Surface roughness in e-beam exposed areas of Pd-
and PdAu-capped MLs increased dramatically

These bright spots are ~14 nm tall
and their chemical composition
could not be determined

Pd

PdAu
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Exposed areas in Pd and PdAu-capped MLs show
increase in oxygen peak
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Depth Auger profiles reveal diffusion barrier
breakdown in the e-beam exposed areas
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diffusion barrierdiffusion barrier
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25 nm25 nm

25 nm25 nm

25 nm25 nm

M3-031211BA1/08-10-2004-CM300

Cross section TEM image clearly shows coverage
problems on PdAu-capped multilayer
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H2O + e- H2O + e-

Oxidation mechanism in Pd-capped multilayers
• Pd island growth

• Pd oxidation

• Expansion of SiO2  into spaces between islands

• Oxidation of Si and Mo layers underneath

Si
Pd
O
H2O

Similar mechanism expected in PdAu-capped multilayers
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H2O + e- CO

Oxidation mechanism in SiC-capped multilayers

• SiC converts to SiO 2 + C + CO(g)
• O diffuses into SiC, CO gas escapes through SiO 2, C left at interface
• M. Di Ventra and S. T. Pantelides, Phys. Rev. Lett. 83 , 1624 (1999).

O diffusion into SiCO diffusion into SiC

O accumulationO accumulation

C C –– O O3 3 complexcomplex

CO ejection out of SiOCO ejection out of SiO22

Si
C
Mo
O
CO
H2O
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Oxidation mechanism in MoSi2-capped multilayers

• Oxidation accelerated by non-stoichiometry, defects
• Protective SiO 2 formation on smooth stoichiometric surface, no MoO3

• MoO 3 and SiO 2 formation starts at defects (pores, cracks)
• Volume increase at defects -> pesting

H2O + e-

Si
Mo
O
H2O
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H2O + e-

Oxidation mechanism in YSZ-capped multilayers

• Yttria-stabilized Zirconia (YSZ) unchanged

• Y stabilizes fluorite structure and introduces vacancies

– 3% Y doping makes 0.75% of O sites vacant

• Mobile vacancies -> Enhanced oxygen diffusion in YSZ

• Oxidation of Si and Mo layers underneath

Zr
Y
Si
O Vacancy
O
H2O
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Si layer partially oxidized to SiO2,
Mo layer partially oxidized to MoO3

YSZ unchangedYSZ

Si layer fully oxidized to SiO2,
Mo layer partially oxidized to MoO3

Partial Pd oxidation,
Au & Pd diffusion into bulk

Au0.5Pd0.5

Si layer fully oxidized to SiO2,
Mo layer partially oxidized

Si oxidized to SiO2,
Mo removal or diffusion into bulk

MoSi2

Si layer fully oxidized to SiO2,
Mo layer unchanged

SiC converts to SiO2 + C + COSiC

Si layer fully oxidized to SiO2,
Mo layer partially oxidized

Partial Pd oxidation,
Pd diffusion into bulk

Pd

Underlying multilayer XPS resultsCapping layer XPS resultsCapping
layer

E-beam exposed samples

XPS and depth Auger results summary
Non-destructive XPS technique was used to obtain local chemical environment
analyzing up to 5 nm into the multilayer
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SummarySummary

•  Fabricated and pre-screened ML1 and ML2 samples. No capping
layer development efforts were funded.

•  Oxidation/EUV reflectivity degradation mechanisms determined for
selection of novel capping layer materials for EUV multilayer mirrors.

•  Ruthenium capping layer still a leading candidate for oxidation
protection. Further improvements are required, however, need
fundamental understanding of Ru surface science.

•  The differences in the mechanisms demonstrate that test protocols
will have materials dependence that cannot be ignored.


