2nd International EUVL Symposium

October 1, 2003

Infineon

Advances in EUV Lithography Development for Sub-50nm DRAM Nodes

Stefan Hirscher Stefan Hien, Stefan Wurm, Siegfried Schwarzl Frank-Michael Kamm, Josef Mathuni, Christian Holfeld Wolf-Dieter Domke, Klaus Lowack, Karl Kragler

Infineon technologies

Never stop thinking.

Contents

- Introduction
- Simulation tools
- Lithography process characterization / optimization
- Infineon absorber masks
- Line edge roughness (LER)
- Resist profiles
- Conclusion

Why EUV for sub-50nm DRAM Manufacturing?

Only world-wide accepted NGL-candidate

Assuming reasonable throughput (>100 wph) cost of ownership allows further DRAM device shrinkage

EUVL Development for Sub-50nm DRAM Nodes

Introduction

Simulator tools

- Lithography process characterization / optimization
- Infineon EUV Cr & TaN absorber masks
- Line edge roughness (LER)
- Resist profiles
- Conclusion & outlook

Simulator Tool Comparison – Near Field Topographical mask: dense lines/spaces, 50 nm

Delight3D

Solid-EUV

phase

Simulator Tool Comparison – Aerial Image Consistency Topographical mask: dense lines/spaces

Delight3D

Solid-EUV

NA-sigma scan dense lines 32 nm

nm

50

process wind dense lines {

window

Stefan Hirscher

2003-10-01 Page 8

Comparison: Simulation / ETS Results (NA = 0.1 / λ = 13.4 / dense lines, 50% pattern density)

- Introduction
- Simulator tools
- Lithography process characterization / optimization
- Infineon EUV Cr & TaN absorber masks
- Line edge roughness (LER)
- Resist profiles
- Conclusion & outlook

Process Characterization Utilizing Open Frame Exposure Tool TEUVL

Shipley EUV-2D Resist sensitivity dependence on process parameters

	EUV	248nm
Resist Thickness	0.5 % per nm	0.5 % per nm
PEB Temperature	1.0 % per °C •	1.0 % per °C
PAB Temperature	0.5 % per °C	0.5 % per °C
Development Time	0.2 % per 10s	0.2 % per 10s

- No difference 248nm / EUV
- (Same result for resist contrast)
- Ongoing: CD variation versus process parameters
- Sufficient process stability!

Process Parameter Optimization Utilizing Open Frame Exposure Tool TEUVL

Shipley EUV-2D Optimized parameters for best contrast and sensitivity

	EUV		248nm
Resist Thickness	100		120
PEB Temperature	135		130
Development Time	60	/	45

Best working point differs from 248nm to EUV

EUVL Symposium, Antwerp Stefan Hirscher 2003-10-01 Page 11

- Introduction
- Simulator tools
- Lithography process characterization / optimization

Infineon EUV Cr & TaN absorber masks

- Line edge roughness (LER)
- Resist profiles
- Conclusion & outlook

2 Masks for ETS Exposures

Cr absorber

- Standard absorber material
- TaN absorber
 - Better CD uniformity
 - Small etch bias

ETS Exposures: Cr & TaN Absorber Masks

mask

exposure

ETS

EUVL Symposium, Antwerp Stefan Hirscher 2003-10-01 Page 14

* at wafer level

Limits of Cr/TaN Absorber Masks

EUVL Symposium, Antwerp Stefan Hirscher

2003-10-01 Page 15

Aerial image simulation:

• NA-σ-scan

- Typical DRAM configuration: dense and isolated lines
- 10 nm CD tolerance
- 8% flare
- bias optimized
- 1nm mask error

Low sigma / NA adjustable: 0.16 – 0.25

New mask concepts needed for sub-30nm technology nodes

- Introduction
- Simulator tools
- Lithography process characterization / optimization
- Infineon EUV Cr & TaN absorber masks
- Line edge roughness (LER)
- Resist profiles
- Conclusion & outlook

Line Edge Roughness - Simulation

Exposure Dose [mJ/cm²]

Intineon EUVL Development

'Photon Statistics' Impacts Printing Results

- Introduction
- Simulator tools
- Lithography process characterization / optimization
- Infineon EUV Cr & TaN absorber masks
- Line edge roughness (LER)
- Resist profiles
- Conclusion

Profiles / Shipley EUV-12A on Silicon Substrate

EUVL Symposium, Antwerp Stefan Hirscher 2003-10-01 Page 20

Suitable profiles for pattern transfer !

Conclusion

Major results:

- Suitable resist profiles for pattern transfer obtained with high sensitive Shipley EUV-12A resist
- Resist response to process parameters comparable to 248nm lithography
- "Shot Noise" effects are not dramatic but contribute to LER above 2mJ/cm²
- TaN promising absorber material down to 30nm node
- Alternative mask concepts needed for sub-30nm nodes
- We are confident that EUVL process can meet the specifications of sub-50nm DRAM technology nodes